In mathematics, the exponential integral Ei is a special function on the complex plane.
It is defined as one particular definite integral of the ratio between an exponential function and its argument.
For real non-zero values of x, the exponential integral Ei(x) is defined as
The Risch algorithm shows that Ei is not an elementary function. The definition above can be used for positive values of x, but the integral has to be understood in terms of the Cauchy principal value due to the singularity of the integrand at zero.
For complex values of the argument, the definition becomes ambiguous due to branch points at 0 and . Instead of Ei, the following notation is used,
For positive values of x, we have .
In general, a branch cut is taken on the negative real axis and E1 can be defined by analytic continuation elsewhere on the complex plane.
For positive values of the real part of , this can be written
The behaviour of E1 near the branch cut can be seen by the following relation:
Several properties of the exponential integral below, in certain cases, allow one to avoid its explicit evaluation through the definition above.
For real or complex arguments off the negative real axis, can be expressed as
where is the Euler–Mascheroni constant. The sum converges for all complex , and we take the usual value of the complex logarithm having a branch cut along the negative real axis.
This formula can be used to compute with floating point operations for real between 0 and 2.5. For , the result is inaccurate due to cancellation.
A faster converging series was found by Ramanujan:
These alternating series can also be used to give good asymptotic bounds for small x, e.g. :
for .
Unfortunately, the convergence of the series above is slow for arguments of larger modulus. For example, more than 40 terms are required to get an answer correct to three significant figures for . However, for positive values of x, there is a divergent series approximation that can be obtained by integrating by parts:
The relative error of the approximation above is plotted on the figure to the right for various values of , the number of terms in the truncated sum ( in red, in pink).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Special functions are particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications. The term is defined by consensus, and thus lacks a general formal definition, but the list of mathematical functions contains functions that are commonly accepted as special. Many special functions appear as solutions of differential equations or integrals of elementary functions.
In mathematics, the upper and lower incomplete gamma functions are types of special functions which arise as solutions to various mathematical problems such as certain integrals. Their respective names stem from their integral definitions, which are defined similarly to the gamma function but with different or "incomplete" integral limits. The gamma function is defined as an integral from zero to infinity. This contrasts with the lower incomplete gamma function, which is defined as an integral from zero to a variable upper limit.
In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function (i.e. a function constructed from a finite number of quotients of constant, algebraic, exponential, trigonometric, and logarithmic functions using field operations). A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. This theorem also provides a basis for the Risch algorithm for determining (with difficulty) which elementary functions have elementary antiderivatives.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
2,3,3-Trisubstituted indolenine constitutes an integral part of many biologically important monoterpene indole alkaloids. We report herein an unprecedented access to this skeleton by a TiCl3-mediated reductive cyclization of tetrasubstituted alkenes bearin ...
We introduce the analog of Kramers-Kronig dispersion relations for correlators of four scalar operators in an arbitrary conformal field theory. The correlator is expressed as an integral over its "absorptive part", defined as a double discontinuity, times ...