A capillary wave is a wave traveling along the phase boundary of a fluid, whose dynamics and phase velocity are dominated by the effects of surface tension.
Capillary waves are common in nature, and are often referred to as ripples. The wavelength of capillary waves on water is typically less than a few centimeters, with a phase speed in excess of 0.2–0.3 meter/second.
A longer wavelength on a fluid interface will result in gravity–capillary waves which are influenced by both the effects of surface tension and gravity, as well as by fluid inertia. Ordinary gravity waves have a still longer wavelength.
When generated by light wind in open water, a nautical name for them is cat's paw waves. Light breezes which stir up such small ripples are also sometimes referred to as cat's paws. On the open ocean, much larger ocean surface waves (seas and swells) may result from coalescence of smaller wind-caused ripple-waves.
The dispersion relation describes the relationship between wavelength and frequency in waves. Distinction can be made between pure capillary waves – fully dominated by the effects of surface tension – and gravity–capillary waves which are also affected by gravity.
The dispersion relation for capillary waves is
where is the angular frequency, the surface tension, the density of the
heavier fluid, the density of the lighter fluid and the wavenumber. The wavelength is
For the boundary between fluid and vacuum (free surface), the dispersion relation reduces to
When capillary waves are also affected substantially by gravity, they are called gravity–capillary waves. Their dispersion relation reads, for waves on the interface between two fluids of infinite depth:
where is the acceleration due to gravity, and are the mass density of the two fluids . The factor in the first term is the Atwood number.
For large wavelengths (small ), only the first term is relevant and one has gravity waves.
In this limit, the waves have a group velocity half the phase velocity: following a single wave's crest in a group one can see the wave appearing at the back of the group, growing and finally disappearing at the front of the group.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium. For a certain water depth, surface gravity waves – i.e.
In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is known as the fetch. Waves in the oceans can travel thousands of kilometers before reaching land. Wind waves on Earth range in size from small ripples to waves over high, being limited by wind speed, duration, fetch, and water depth.
The ocean (also known as the sea or the world ocean) is a body of salt water that covers approximately 70.8% of the Earth and contains 97% of Earth's water. The term ocean also refers to any of the large bodies of water into which the world ocean is conventionally divided. Distinct names are used to identify five different areas of the ocean: Pacific (the largest), Atlantic, Indian, Southern, and Arctic (the smallest). Seawater covers approximately of the planet.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Le cours offre des méthodes de calcul hydraulique pour des problèmes d'écoulements non permanents tels que les crues, les vagues, et les ruptures de barrage. L'accent est mis sur la compréhension phys
The class covers the fundamentals of wave dynamics and fracture mechanics. The aim is to deepen their knowledge in advanced topics in mechanics of solids and structures and discuss current research to
Nondimensionalized Navier-Stokes equations result in a great variety of models (Stokes, Lubrication, Euler, Potential) depending on the Reynolds number. The concept of boundary layer enables us then t
Explores resonant three wave coupling, focusing on Stimulated Raman Scattering in plasma and the development of parametric instabilities affecting laser light.
Nonlinear optical frequency conversion is one of the driving research areas in photonics. Its quasi instantaneous response and the promise of low power consumption in integrated structures could cover the demand for fast signal processing with minimal ener ...
The study of non-contact manipulation in water, and the ability to robotically control floating objects has gained recent attention due to wide-ranging potential applications, including the analysis of plastic pollution in the oceans and the optimization o ...
Lausanne2023
, ,
We study the drainage of a viscous liquid film coating the outside of a solid horizontal cylinder, where gravity acts vertically. We focus on the limit of large Ohnesorge numbers Oh, where inertia is negligible compared to viscous effects. We first study t ...