In physics, quasiparticles and collective excitations are closely related phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum.
For example, as an electron travels through a semiconductor, its motion is disturbed in a complex way by its interactions with other electrons and with atomic nuclei. The electron behaves as though it has a different effective mass travelling unperturbed in vacuum. Such an electron is called an electron quasiparticle. In another example, the aggregate motion of electrons in the valence band of a semiconductor or a hole band in a metal behave as though the material instead contained positively charged quasiparticles called electron holes. Other quasiparticles or collective excitations include the phonon, a quasiparticle derived from the vibrations of atoms in a solid, and the plasmons, a particle derived from plasma oscillation.
These phenomena are typically called quasiparticles if they are related to fermions, and called collective excitations if they are related to bosons, although the precise distinction is not universally agreed upon. Thus, electrons and electron holes (fermions) are typically called quasiparticles, while phonons and plasmons (bosons) are typically called collective excitations.
The quasiparticle concept is important in condensed matter physics because it can simplify the many-body problem in quantum mechanics. The theory of quasiparticles was started by the Soviet physicist Lev Landau in the 1930s.
Solids are made of only three kinds of particles: electrons, protons, and neutrons. Quasiparticles are none of these; instead, each of them is an emergent phenomenon that occurs inside the solid. Therefore, while it is quite possible to have a single particle (electron or proton or neutron) floating in space, a quasiparticle can only exist inside interacting many-particle systems (primarily solids).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Starting from a microscopic description, the course introduces to the physics of quantum fluids focusing on basic concepts like Bose-Einstein condensation, superfluidity, and Fermi liquid theory.
This course will give an overview of the experimental state of the art of quantum technology for Quantum Information Processing (QIP). We will explore some of the most promising approaches for realizi
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
The fractional quantum Hall effect (FQHE) is a physical phenomenon in which the Hall conductance of 2-dimensional (2D) electrons shows precisely quantized plateaus at fractional values of . It is a property of a collective state in which electrons bind magnetic flux lines to make new quasiparticles, and excitations have a fractional elementary charge and possibly also fractional statistics.
In physics, polaritons pəˈlærᵻtɒnz,_poʊ- are quasiparticles resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation. They are an expression of the common quantum phenomenon known as level repulsion, also known as the avoided crossing principle. Polaritons describe the crossing of the dispersion of light with any interacting resonance. To this extent polaritons can also be thought of as the new normal modes of a given material or structure arising from the strong coupling of the bare modes, which are the photon and the dipolar oscillation.
In physics, an anyon is a type of quasiparticle that occurs only in two-dimensional systems, with properties much less restricted than the two kinds of standard elementary particles, fermions and bosons. In general, the operation of exchanging two identical particles, although it may cause a global phase shift, cannot affect observables. Anyons are generally classified as abelian or non-abelian. Abelian anyons (detected by two experiments in 2020) play a major role in the fractional quantum Hall effect.
Through the use of the piecewise-linearity condition of the total energy, we correct the self-interaction for the study of polarons by constructing nonempirical functionals at the semilocal level of theory. We consider two functionals, the gamma DFT and mu ...
Excitons play an essential role in the optical response of two-dimensional materials. These are bound states showing up in the band gaps of many-body systems and are conceived as quasiparticles formed by an electron and a hole. By performing real-time simu ...
Nature Portfolio2024
Phase transitions in condensed matter are a source of exotic emergent properties. We study the fully frustrated bilayer Heisenberg antiferromagnet to demonstrate that an applied magnetic field creates a previously unknown emergent criticality. The quantum ...