In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is known as the fetch. Waves in the oceans can travel thousands of kilometers before reaching land. Wind waves on Earth range in size from small ripples to waves over high, being limited by wind speed, duration, fetch, and water depth.
When directly generated and affected by local wind, a wind wave system is called a wind sea. Wind waves will travel in a great circle route after being generated – curving slightly left in the southern hemisphere and slightly right in the northern hemisphere. After moving out of the area of fetch, wind waves are called swells and can travel thousands of kilometers. A noteworthy example of this is waves generated south of Tasmania during heavy winds that will travel across the Pacific to southern California, producing desirable surfing conditions. Swell consists of wind-generated waves that are not significantly affected by the local wind at that time. They have been generated elsewhere and sometimes previously. Wind waves in the ocean are also called ocean surface waves and are mainly gravity waves, where gravity is the main equilibrium force.
Wind waves have a certain amount of randomness: subsequent waves differ in height, duration, and shape with limited predictability. They can be described as a stochastic process, in combination with the physics governing their generation, growth, propagation, and decay – as well as governing the interdependence between flow quantities such as the water surface movements, flow velocities, and water pressure. The key statistics of wind waves (both seas and swells) in evolving sea states can be predicted with wind wave models.
Although waves are usually considered in the water seas of Earth, the hydrocarbon seas of Titan may also have wind-driven waves. Waves in bodies of water may also be generated by other causes, both at the surface and underwater.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Le cours offre des méthodes de calcul hydraulique pour des problèmes d'écoulements non permanents tels que les crues, les vagues, et les ruptures de barrage. L'accent est mis sur la compréhension phys
The course offers an overview on selected advanced photonics topics. It targets students with a broad photonics background or equivalent, who are willing to broaden their knowledge in the discipline.
In fluid dynamics, gravity waves are waves generated in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. An example of such an interface is that between the atmosphere and the ocean, which gives rise to wind waves. A gravity wave results when fluid is displaced from a position of equilibrium. The restoration of the fluid to equilibrium will produce a movement of the fluid back and forth, called a wave orbit.
In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium. For a certain water depth, surface gravity waves – i.e.
In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the reception of such waves and their perception by the brain. Only acoustic waves that have frequencies lying between about 20 Hz and 20 kHz, the audio frequency range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with wavelengths of to . Sound waves above 20 kHz are known as ultrasound and are not audible to humans.
Explores resonant three wave coupling, focusing on Stimulated Raman Scattering in plasma and the development of parametric instabilities affecting laser light.
Self-propelled particles such as bacteria or algae swimming through a fluid are non-equilibrium systems where particle motility breaks microscopic detailed balance, often resulting in large-scale collective motion. Previous theoretical work has identified ...
Surface roughness is a key factor when it comes to friction and wear, as well as to other physical properties. These phenomena are controlled by mechanisms acting at small scales, in which the topography of apparently flat surfaces is revealed. Roughness i ...
New York2024
,
Wave breaking is a complex physical process about which open questions remain. For some applications, it is critical to include breaking effects in phase-resolved envelope-based wave models such as the non-linear Schr & ouml;dinger. A promising approach is ...