Summary
Histopathology (compound of three Greek words: ἱστός histos 'tissue', πάθος pathos 'suffering', and -λογία -logia 'study of') refers to the microscopic examination of tissue in order to study the manifestations of disease. Specifically, in clinical medicine, histopathology refers to the examination of a biopsy or surgical specimen by a pathologist, after the specimen has been processed and histological sections have been placed onto glass slides. In contrast, cytopathology examines free cells or tissue micro-fragments (as "cell blocks"). Histopathological examination of tissues starts with surgery, biopsy, or autopsy. The tissue is removed from the body or plant, and then, often following expert dissection in the fresh state, placed in a fixative which stabilizes the tissues to prevent decay. The most common fixative is 10% neutral buffered formalin (corresponding to 3.7% w/v formaldehyde in neutral buffered water, such as phosphate buffered saline). Histology The tissue is then prepared for viewing under a microscope using either chemical fixation or frozen section. If a large sample is provided e.g. from a surgical procedure then a pathologist looks at the tissue sample and selects the part most likely to yield a useful and accurate diagnosis - this part is removed for examination in a process commonly known as grossing or cut up. Larger samples are cut to correctly situate their anatomical structures in the cassette. Certain specimens (especially biopsies) can undergo agar pre-embedding to assure correct tissue orientation in cassette & then in the block & then on the diagnostic microscopy slide. This is then placed into a plastic cassette for most of the rest of the process. Fixation (histology) In addition to formalin, other chemical fixatives have been used. But, with the advent of immunohistochemistry (IHC) staining and diagnostic molecular pathology testing on these specimen samples, formalin has become the standard chemical fixative in human diagnostic histopathology.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
BIOENG-518: Methods: from disease models to therapy
This course will describe methods underlying translational approaches from disease modeling and characterization to therapeutic applications. The presented techniques will be complemented by hands-on
BIOENG-516: Lab methods : histology
Presentation of the diverse techniques to prepare samples for bright field microscopy, as well as procedures for standard histology stains and proteins detection with observation of tissues under micr
Related lectures (2)
Biliary Vesicle Morphology
Explores the structure and function of the biliary vesicle as a bile reservoir.
Connective Tissues: Specialized Types
Discusses the classification and roles of specialized connective tissues in the body.
Related publications (37)

Graph Representation Learning in Computational Pathology

Guillaume Jaume

Advances in scanning systems have enabled the digitization of pathology slides into Whole-Slide Images (WSIs), opening up opportunities to develop Computational Pathology (CompPath) methods for computer-aided cancer diagnosis and prognosis. CompPath has be ...
EPFL2022

Fractal analysis in the quantification of medical imaging associated with multiple sclerosis pathology

Maria-Alexandra Paun

Backgrounds: Multiple sclerosis (MS) is an inveterate phlogistic situation characterized by focal and vaguely diffusive de-myelination and neurodegeneration, in the sphere of central nervous system (CNS). The brain's chronic inflammatory reaction includes ...
IMR PRESS2022

An Open-Source Whole Slide Image Registration Workflow at Cellular Precision Using Fiji, QuPath and Elastix

Olivier Burri, Arne Seitz, Romain Guiet, Jessica Sordet-Dessimoz, Nicolas René Chiaruttini

Image analysis workflows for Histology increasingly require the correlation and combination of measurements across several whole slide images. Indeed, for multiplexing, as well as multimodal imaging, it is indispensable that the same sample is imaged multi ...
FRONTIERS MEDIA SA2022
Show more
Related concepts (18)
Immunohistochemistry
Immunohistochemistry (IHC) is the most common application of immunostaining. It involves the process of selectively identifying antigens (proteins) in cells of a tissue section by exploiting the principle of antibodies binding specifically to antigens in biological tissues. IHC takes its name from the roots "immuno", in reference to antibodies used in the procedure, and "histo", meaning tissue (compare to immunocytochemistry). Albert Coons conceptualized and first implemented the procedure in 1941.
Medical diagnosis
Medical diagnosis (abbreviated Dx, Dx, or Ds) is the process of determining which disease or condition explains a person's symptoms and signs. It is most often referred to as diagnosis with the medical context being implicit. The information required for diagnosis is typically collected from a history and physical examination of the person seeking medical care. Often, one or more diagnostic procedures, such as medical tests, are also done during the process. Sometimes the posthumous diagnosis is considered a kind of medical diagnosis.
Frozen section procedure
The frozen section procedure is a pathological laboratory procedure to perform rapid microscopic analysis of a specimen. It is used most often in oncological surgery. The technical name for this procedure is cryosection. The microtome device that cold cuts thin blocks of frozen tissue is called a cryotome. The quality of the slides produced by frozen section is of lower quality than formalin fixed paraffin embedded tissue processing. While diagnosis can be rendered in many cases, fixed tissue processing is preferred in many conditions for more accurate diagnosis.
Show more