The exploration-exploitation dilemma, also known as the explore-exploit tradeoff, is a fundamental concept in decision-making that arises in many domains. It is depicted as the balancing act between two opposing strategies. Exploitation involves choosing the best-known option based on past experiences, while exploration involves trying out new options that may lead to better outcomes in the future. Finding the optimal balance between these two strategies is a crucial challenge in many decision-making situations, where the goal is to maximize long-term benefits. In the context of machine learning, the exploration-exploitation tradeoff is often encountered in reinforcement learning, a type of machine learning that involves training agents to make decisions based on feedback from the environment. The agent must decide whether to exploit the current best-known policy or explore new policies to improve its performance. Various algorithms have been developed to address this challenge, such as epsilon-greedy, Thompson sampling, and the upper confidence bound.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.