Interferometric synthetic aperture radar, abbreviated InSAR (or deprecated IfSAR), is a radar technique used in geodesy and remote sensing. This geodetic method uses two or more synthetic aperture radar (SAR) images to generate maps of surface deformation or digital elevation, using differences in the phase of the waves returning to the satellite or aircraft. The technique can potentially measure millimetre-scale changes in deformation over spans of days to years. It has applications for geophysical monitoring of natural hazards, for example earthquakes, volcanoes and landslides, and in structural engineering, in particular monitoring of subsidence and structural stability.
Synthetic aperture radar
Synthetic aperture radar (SAR) is a form of radar in which sophisticated processing of radar data is used to produce a very narrow effective beam. It can be used to form images of relatively immobile targets; moving targets can be blurred or displaced in the formed images. SAR is a form of active remote sensing – the antenna transmits radiation that is reflected from the image area, as opposed to passive sensing, where the reflection is detected from ambient illumination. SAR image acquisition is therefore independent of natural illumination and images can be taken at night. Radar uses electromagnetic radiation at microwave frequencies; the atmospheric absorption at typical radar wavelengths is very low, meaning observations are not prevented by cloud cover.
Phase (waves)
SAR makes use of the amplitude and the absolute phase of the return signal data. In contrast, interferometry uses differential phase of the reflected radiation, either from multiple passes along the same trajectory and/or from multiple displaced phase centers (antennas) on a single pass. Since the outgoing wave is produced by the satellite, the phase is known, and can be compared to the phase of the return signal. The phase of the return wave depends on the distance to the ground, since the path length to the ground and back will consist of a number of whole wavelengths plus some fraction of a wavelength.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours d'introduction à la microscopie a pour but de donner un apperçu des différentes techniques d'analyse de la microstructure et de la composition des matériaux, en particulier celles liées aux m
Introduction to geometrical and wave optics for understanding the principles of optical microscopes, their advantages and limitations. Describing the basic microscopy components and the commonly used
The students learn several techniques for spatial mesurements, such as geodesy, aerial photogrammetry and laser scanning. They will be able to collaborate with geologists and civil engineers to master
Synthetic-aperture radar (SAR) is a form of radar that is used to create two-dimensional images or three-dimensional reconstructions of objects, such as landscapes. SAR uses the motion of the radar antenna over a target region to provide finer spatial resolution than conventional stationary beam-scanning radars. SAR is typically mounted on a moving platform, such as an aircraft or spacecraft, and has its origins in an advanced form of side looking airborne radar (SLAR).
An Earth observation satellite or Earth remote sensing satellite is a satellite used or designed for Earth observation (EO) from orbit, including spy satellites and similar ones intended for non-military uses such as environmental monitoring, meteorology, cartography and others. The most common type are Earth imaging satellites, that take s, analogous to aerial photographs; some EO satellites may perform remote sensing without forming pictures, such as in GNSS radio occultation.
Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring information about Earth and other planets. Remote sensing is used in numerous fields, including geophysics, geography, land surveying and most Earth science disciplines (e.g. exploration geophysics, hydrology, ecology, meteorology, oceanography, glaciology, geology); it also has military, intelligence, commercial, economic, planning, and humanitarian applications, among others.
Taking advantage of Capella's ability to dwell on a target for an extended period of time (nominally 30s) in its spotlight (SP) mode, an unsupervised methodology for detecting moving targets in this data is presented in this paper. By colourizing short seg ...
Microscopic visualisation of optically transparent samples has been a topic of interest for several decades. Features such as density or chemical composition can influence the optical phase of transmitted light, and phase contrast can reveal these structur ...
Self-exciting point processes, widely used to model arrival phenomena in nature and society, are often difficult to identify. The estimation becomes even more challenging when arrivals are recorded only as bin counts on a finite partition of the observatio ...