Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The main advantage of conductive polymers is that they are easy to process, mainly by dispersion. Conductive polymers are generally not thermoplastics, i.e., they are not thermoformable. But, like insulating polymers, they are organic materials. They can offer high electrical conductivity but do not show similar mechanical properties to other commercially available polymers. The electrical properties can be fine-tuned using the methods of organic synthesis and by advanced dispersion techniques.
Polyaniline was first described in the mid-19th century by Henry Letheby, who investigated the electrochemical and chemical oxidation products of aniline in acidic media. He noted that reduced form was colourless but the oxidized forms were deep blue.
The first highly-conductive organic compounds were the charge transfer complexes. In the 1950s, researchers reported that polycyclic aromatic compounds formed semi-conducting charge-transfer complex salts with halogens. In 1954, researchers at Bell Labs and elsewhere reported organic charge transfer complexes with resistivities as low as 8 ohms-cm. In the early 1970s, researchers demonstrated salts of tetrathiafulvalene show almost metallic conductivity, while superconductivity was demonstrated in 1980. Broad research on charge transfer salts continues today. While these compounds were technically not polymers, this indicated that organic compounds can carry current. While organic conductors were previously intermittently discussed, the field was particularly energized by the prediction of superconductivity following the discovery of BCS theory.
In 1963 Australians B.A. Bolto, D.E. Weiss, and coworkers reported derivatives of polypyrrole with resistivities as low as 1 ohm·cm. Refs. and cite multiple reports of similar high-conductivity oxidized polyacetylenes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
This course will introduce students to the field of organic electronic materials. The goal of this course is to discuss the origin of electronic properties in organic materials, charge transport mecha
Organic electronics is a field of materials science concerning the design, synthesis, characterization, and application of organic molecules or polymers that show desirable electronic properties such as conductivity. Unlike conventional inorganic conductors and semiconductors, organic electronic materials are constructed from organic (carbon-based) molecules or polymers using synthetic strategies developed in the context of organic chemistry and polymer chemistry.
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels.
Molecular electronics is the study and application of molecular building blocks for the fabrication of electronic components. It is an interdisciplinary area that spans physics, chemistry, and materials science. The unifying feature is use of molecular building blocks to fabricate electronic components. Due to the prospect of size reduction in electronics offered by molecular-level control of properties, molecular electronics has generated much excitement.
The pyroresistive response of conductive polymer composites (CPCs) has attracted much interest because of its potential applications in many electronic devices requiring a significant responsiveness to changes in external physical parameters such as temper ...
Amer Physical Soc2024
, ,
Ammonia borane (AB) has been extensively studied as a solid-state hydrogen storage material. On the other hand, its reactivity with CO2 is still unclear, especially in the solid state. By carefully controlling the CO2 pressure and temperature, AB efficient ...
Polymers play a central role in shaping our world across various fields, but their heavy reliance on petrochemicals poses climate change, environmental and health risks. To address and alleviate these issues, transitioning to sustainable polymers, sourced ...