Concept

Second-harmonic generation

Summary
Second-harmonic generation (SHG, also called frequency doubling) is a nonlinear optical process in which two photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with twice the energy of the initial photons (equivalently, twice the frequency and half the wavelength), that conserves the coherence of the excitation. It is a special case of sum-frequency generation (2 photons), and more generally of harmonic generation. The second-order nonlinear susceptibility of a medium characterizes its tendency to cause SHG. Second-harmonic generation, like other even-order nonlinear optical phenomena, is not allowed in media with inversion symmetry (in the leading electric dipole contribution). However, effects such as the Bloch–Siegert shift (oscillation), found when two-level systems are driven at Rabi frequencies comparable to their transition frequencies, will give rise to second harmonic generation in centro-symmetric systems. In addition, in non-centrosymmetric crystals belonging to crystallographic point group 432, the SHG is not possible and under Kleinman's conditions SHG in 422 and 622 point groups should vanish although some exceptions exist. In some cases, almost 100% of the light energy can be converted to the second harmonic frequency. These cases typically involve intense pulsed laser beams passing through large crystals, and careful alignment to obtain phase matching. In other cases, like second-harmonic imaging microscopy, only a tiny fraction of the light energy is converted to the second harmonic—but this light can nevertheless be detected with the help of optical filters. Generating the second harmonic, often called frequency doubling, is also a process in radio communication; it was developed early in the 20th century, and has been used with frequencies in the megahertz range. It is a special case of frequency multiplication. Second-harmonic generation was first demonstrated by Peter Franken, A. E. Hill, C. W. Peters, and G.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.