An astrolabe (ἀστρολάβος astrolábos; ٱلأَسْطُرلاب al-Asṭurlāb; ستاره‌یاب Setāreyāb) is an astronomical instrument dating back to ancient times. It serves as a star chart and physical model of visible heavenly bodies. Its various functions also make it an elaborate inclinometer and an analog calculation device capable of working out several kinds of problems in astronomy. In its simplest form it is a metal disc with a pattern of wires, cutouts, and perforations that allows a user to calculate astronomical positions precisely. Historically used by astronomers, it is able to measure the altitude above the horizon of a celestial body, day or night; it can be used to identify stars or planets, to determine local latitude given local time (and vice versa), to survey, or to triangulate. It was used in classical antiquity, the Islamic Golden Age, the European Middle Ages and the Age of Discovery for all these purposes. The astrolabe is effective for determining latitude on land or calm seas. Although it is less reliable on the heaving deck of a ship in rough seas, the mariner's astrolabe was developed to solve that problem. A 10th-century astronomer deduced that there were around 1000 applications for the astrolabe's various functions, and these ranged from the astrological, the astronomical and the religious, to seasonal and daily time-keeping and tide tables. At the time of their use, astrology was widely considered as much of a serious science as astronomy, and study of the two went hand-in-hand. The astronomical interest varied between folk astronomy (of the pre-Islamic tradition in Arabia) which was concerned with celestial and seasonal observations, and mathematical astronomy, which would inform intellectual practices and precise calculations based on astronomical observations. In regard to the astrolabe's religious functionality, the demands of Islamic prayer times were to be astronomically determined to ensure precise daily timings, and the qibla, the direction of Mecca towards which Muslims must pray, could also be determined by this device.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MATH-126: Geometry for architects II
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.