Carbachol, also known as carbamylcholine and sold under the brand name Miostat among others, is a cholinomimetic drug that binds and activates acetylcholine receptors. Thus it is classified as a cholinergic agonist. It is primarily used for various ophthalmic purposes, such as for treating glaucoma, or for use during ophthalmic surgery. It is generally administered as an ophthalmic solution (i.e., eye drops).
Carbachol produces effects comparable to those of sarin if a massive overdose is administered (as may occur following industrial and shipping accidents) and therefore it is classified as an extremely hazardous substance in the United States as defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act (42 U.S.C. 11002), and is subject to strict reporting requirements by facilities which produce, store, or use it in significant quantities.
It is on the World Health Organization's List of Essential Medicines.
Carbachol is a choline carbamate and a positively charged quaternary ammonium compound. It is not well absorbed in the gastro-intestinal tract and does not cross the blood–brain barrier. It is usually administered topical ocular or through intraocular injection. Carbachol is not easily metabolized by cholinesterase, it has a 2 to 5 minute onset of action and its duration of action is 4 to 8 hours with topical administration and 24 hours for intraocular administration. Since carbachol is poorly absorbed through topical administration, benzalkonium chloride is mixed in to promote absorption.
Carbachol is a parasympathomimetic that stimulates both muscarinic and nicotinic receptors. In topical ocular and intraocular administration its principal effects are miosis and increased aqueous humour outflow.
In the cat and rat, carbachol is well known for its ability to induce rapid eye movement (REM) sleep when microinjected into the pontine reticular formation. Carbachol elicits this REM sleep-like state via activation of postsynaptic muscarinic cholinergic receptors (mAChRs).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours permet aux étudiants ayant suivi Morphologie I de réviser et d'approfondir leurs connaissances par l'étude de l'anatomie radiologique et du développement. L'origine de malformations fréquente
Nicotinic acetylcholine receptors, or nAChRs, are receptor polypeptides that respond to the neurotransmitter acetylcholine. Nicotinic receptors also respond to drugs such as the agonist nicotine. They are found in the central and peripheral nervous system, muscle, and many other tissues of many organisms. At the neuromuscular junction they are the primary receptor in muscle for motor nerve-muscle communication that controls muscle contraction.
A nicotinic agonist is a drug that mimics the action of acetylcholine (ACh) at nicotinic acetylcholine receptors (nAChRs). The nAChR is named for its affinity for nicotine. Examples include nicotine (by definition), acetylcholine (the endogenous agonist of nAChRs), choline, epibatidine, lobeline, varenicline and cytisine. Nicotine has been known for centuries for its intoxicating effect. It was first isolated in 1828 from the tobacco plant by German chemists Posselt and Reimann.
Muscarinic acetylcholine receptors, or mAChRs, are acetylcholine receptors that form G protein-coupled receptor complexes in the cell membranes of certain neurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibers in the parasympathetic nervous system. Muscarinic receptors are so named because they are more sensitive to muscarine than to nicotine.
It has been suggested already more than 60 years ago to use polarized nuclei in particle scattering experiments1, but only with the discovery of the solid effect dynamic nuclear polarization process2 the realisation of polarized solid targets became possib ...