Summary
Calculus, originally called infinitesimal calculus, is a mathematical discipline focused on limits, continuity, derivatives, integrals, and infinite series. Many elements of calculus appeared in ancient Greece, then in China and the Middle East, and still later again in medieval Europe and in India. Infinitesimal calculus was developed in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz independently of each other. An argument over priority led to the Leibniz–Newton calculus controversy which continued until the death of Leibniz in 1716. The development of calculus and its uses within the sciences have continued to the present day. In mathematics education, calculus denotes courses of elementary mathematical analysis, which are mainly devoted to the study of functions and limits. The word calculus is Latin for "small pebble" (the diminutive of calx, meaning "stone"), a meaning which still persists in medicine. Because such pebbles were used for counting out distances, tallying votes, and doing abacus arithmetic, the word came to mean a method of computation. In this sense, it was used in English at least as early as 1672, several years prior to the publications of Leibniz and Newton. In addition to the differential calculus and integral calculus, the term is also used widely for naming specific methods of calculation. Examples of this include propositional calculus in logic, the calculus of variations in mathematics, process calculus in computing, and the felicific calculus in philosophy. History of mathematics Ancient Egyptian mathematics and Babylonian mathematics The ancient period introduced some of the ideas that led to integral calculus, but does not seem to have developed these ideas in a rigorous and systematic way. Calculations of volumes and areas, one goal of integral calculus, can be found in the Egyptian Moscow papyrus (1820 BC), but the formulas are only given for concrete numbers, some are only approximately true, and they are not derived by deductive reasoning.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
MATH-110(a): Advanced linear algebra I
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.
MATH-101(en): Analysis I (English)
We study the fundamental concepts of analysis, calculus and the integral of real-valued functions of a real variable.
MATH-101(de): Analysis I (German)
Es werden die Grundlagen der Analysis sowie der Differential- und Integralrechnung von Funktionen einer reellen Veränderlichen erarbeitet.
Show more
Related lectures (48)
Linear Algebra: Multilinear Forms
Explores multilinear forms in linear algebra, emphasizing their properties and applications.
Differential Calculation
Explores the history and concepts of differential calculus, including tangent, derivative, limit, and various function derivatives.
Complex Numbers: Operations and Properties
Explores the properties and operations of complex numbers in mathematics.
Show more
Related publications (14)
Related concepts (16)
Method of Fluxions
Method of Fluxions (De Methodis Serierum et Fluxionum) is a mathematical treatise by Sir Isaac Newton which served as the earliest written formulation of modern calculus. The book was completed in 1671 and published in 1736. Fluxion is Newton's term for a derivative. He originally developed the method at Woolsthorpe Manor during the closing of Cambridge during the Great Plague of London from 1665 to 1667, but did not choose to make his findings known (similarly, his findings which eventually became the Philosophiae Naturalis Principia Mathematica were developed at this time and hidden from the world in Newton's notes for many years).
Cavalieri's quadrature formula
In calculus, Cavalieri's quadrature formula, named for 17th-century Italian mathematician Bonaventura Cavalieri, is the integral and generalizations thereof. This is the definite integral form; the indefinite integral form is: There are additional forms, listed below. Together with the linearity of the integral, this formula allows one to compute the integrals of all polynomials. The term "quadrature" is a traditional term for area; the integral is geometrically interpreted as the area under the curve y = xn.
Fluxion
A fluxion is the instantaneous rate of change, or gradient, of a fluent (a time-varying quantity, or function) at a given point. Fluxions were introduced by Isaac Newton to describe his form of a time derivative (a derivative with respect to time). Newton introduced the concept in 1665 and detailed them in his mathematical treatise, Method of Fluxions. Fluxions and fluents made up Newton's early calculus. Fluxions were central to the Leibniz–Newton calculus controversy, when Newton sent a letter to Gottfried Wilhelm Leibniz explaining them, but concealing his words in code due to his suspicion.
Show more