Concept

Histoire du calcul infinitésimal

Résumé
L'histoire du calcul infinitésimal remonte à l'Antiquité. Sa création est liée à une polémique entre deux mathématiciens : Isaac Newton et Gottfried Wilhelm Leibniz. Néanmoins, on retrouve chez des mathématiciens plus anciens les prémices de ce type de calcul : Archimède, Thābit ibn Qurra, Pierre de Fermat et Isaac Barrow notamment. La notion de nombre dérivé a vu le jour au dans les écrits de Leibniz et de Newton qui le nomme fluxion et qui le définit comme « le quotient ultime de deux accroissements évanescents ». Le domaine mathématique de l'analyse numérique connut dans la seconde moitié du une avancée prodigieuse grâce aux travaux de Newton et de Leibniz en matière de calcul différentiel et intégral, traitant notamment de la notion d'infiniment petit et de son rapport avec les sommes dites intégrales. C'est cependant Blaise Pascal qui, dans la première moitié du , a le premier mené des études sur la notion de tangente à une courbe – lui-même les appelait « touchantes ». Le marquis de l'Hospital contribue à diffuser le calcul différentiel de Leibniz à la fin du grâce à son livre sur l'analyse des infiniment petits. John Wallis, mathématicien anglais (surtout connu pour la suite d'intégrales qui portent son nom), contribue également à l'essor de l'analyse différentielle. Néanmoins cette théorie tout juste éclose n'est pas encore, à l'époque, pourvue de toute la rigueur mathématique qu'elle aurait exigée, et notamment la notion d'infiniment petit introduite par Newton, qui tient plus de l'intuitif, et qui pourrait engendrer des erreurs dès lors que l'on ne s'entend pas bien sur ce qui est ou non négligeable. C'est au que d'Alembert introduit la définition plus rigoureuse du nombre dérivé en tant que limite du taux d'accroissement – sous une forme semblable à celle qui est utilisée et enseignée de nos jours. Cependant, à l'époque de d'Alembert, c'est la notion de limite qui pose un problème : n'est pas encore construit formellement (voir Construction des nombres réels).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.