Concept

Prime triplet

Summary
In number theory, a prime triplet is a set of three prime numbers in which the smallest and largest of the three differ by 6. In particular, the sets must have the form (p, p + 2, p + 6) or (p, p + 4, p + 6). With the exceptions of (2, 3, 5) and (3, 5, 7), this is the closest possible grouping of three prime numbers, since one of every three sequential odd numbers is a multiple of three, and hence not prime (except for 3 itself). The first prime triplets are (5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353), (457, 461, 463), (461, 463, 467), (613, 617, 619), (641, 643, 647), (821, 823, 827), (823, 827, 829), (853, 857, 859), (857, 859, 863), (877, 881, 883), (881, 883, 887) A prime triplet contains a single pair of: Twin primes: (p, p + 2) or (p + 4, p + 6); Cousin primes: (p, p + 4) or (p + 2, p + 6); and Sexy primes: (p, p + 6). A prime can be a member of up to three prime triplets - for example, 103 is a member of (97, 101, 103), (101, 103, 107) and (103, 107, 109). When this happens, the five involved primes form a prime quintuplet. A prime quadruplet (p, p + 2, p + 6, p + 8) contains two overlapping prime triplets, (p, p + 2, p + 6) and (p + 2, p + 6, p + 8). Similarly to the twin prime conjecture, it is conjectured that there are infinitely many prime triplets. The first known gigantic prime triplet was found in 2008 by Norman Luhn and François Morain. The primes are (p, p + 2, p + 6) with p = 2072644824759 × 2^33333 − 1. the largest known proven prime triplet contains primes with 20008 digits, namely the primes (p, p + 2, p + 6) with p = 4111286921397 × 2^66420 − 1. The Skewes number for the triplet (p, p + 2, p + 6) is 87613571, and for the triplet (p, p + 4, p + 6) it is 337867.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.