Drip irrigation or trickle irrigation is a type of micro-irrigation system that has the potential to save water and nutrients by allowing water to drip slowly to the roots of plants, either from above the soil surface or buried below the surface. The goal is to place water directly into the root zone and minimize evaporation. Drip irrigation systems distribute water through a network of valves, pipes, tubing, and emitters. Depending on how well designed, installed, maintained, and operated it is, a drip irrigation system can be more efficient than other types of irrigation systems, such as surface irrigation or sprinkler irrigation.
Primitive drip irrigation has been used since ancient times. Fan Shengzhi shu, written in China during the first century BCE, describes the use of buried, unglazed clay pots filled with water, sometimes referred to as Ollas, as a means of irrigation.
Modern drip irrigation began its development in Germany in 1860 when researchers began experimenting with subsurface irrigation using clay pipe to create combination irrigation and drainage systems.
The research was later expanded in the 1920s to include the application of perforated pipe systems.
The usage of plastic to hold and distribute water in drip irrigation was later developed in Australia by Hannis Thill.
Usage of a plastic emitter in drip irrigation was developed in Israel by Simcha Blass and his son Yeshayahu. Instead of releasing water through tiny holes easily blocked by tiny particles, water was released through larger and longer passageways by using friction to slow water inside a plastic emitter. The first experimental system of this type was established in 1959 by Blass, who partnered later (1964) with Kibbutz Hatzerim to create an irrigation company called Netafim. Together they developed and patented the first practical surface drip irrigation emitter.
Goldberg and Shmueli (1970) developed a significant improvement: "in the Arava desert in southern Israel [Shmueli] demonstrated that a trickle-irrigation system installed on the soil surface worked exceptionally well in producing vegetable crops, even with saline water (Elfving, 1989).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course aims at teaching the fundamentals of both irrigation and drainage techniques with particular attention to the soil water balance and related management, the materials, the construction meth
Together, we will continue our exploration of the theme of water by building a set of fountains that we will later attempt to integrate into a domestic project for the port of Basel. The focus will be
Together, we will continue our exploration of the theme of water by building a set of fountains that we will later attempt to integrate into a domestic project for the port of Basel. The focus will be
The environmental effects of irrigation relate to the changes in quantity and quality of soil and water as a result of irrigation and the subsequent effects on natural and social conditions in river basins and downstream of an irrigation scheme. The effects stem from the altered hydrological conditions caused by the installation and operation of the irrigation scheme. Amongst some of these problems is depletion of underground aquifers through overdrafting.
Alkali, or Alkaline, soils are clay soils with high pH (greater than 8.5), a poor soil structure and a low infiltration capacity. Often they have a hard calcareous layer at 0.5 to 1 metre depth. Alkali soils owe their unfavorable physico-chemical properties mainly to the dominating presence of sodium carbonate, which causes the soil to swell and difficult to clarify/settle. They derive their name from the alkali metal group of elements, to which sodium belongs, and which can induce basicity.
Soil salinity control refers to controlling the process and progress of soil salinity to prevent soil degradation by salination and reclamation of already salty (saline) soils. Soil reclamation is also called soil improvement, rehabilitation, remediation, recuperation, or amelioration. The primary man-made cause of salinization is irrigation. River water or groundwater used in irrigation contains salts, which remain in the soil after the water has evaporated.
Explores the historical evolution and current challenges of hydraulic installations worldwide.
, , , , ,
Climate change is predicted to increase atmospheric vapor pressure deficit, exacerbating soil drought, and thus enhancing tree evaporative demand and mortality. Yet, few studies have addressed the longer-term drought acclimation strategy of trees, particul ...
The urban heat island effect (UHI) has been widely observed globally, causing climate, health, and energy impacts in cities. The UHI intensities have been found to largely depend on background climate and the properties of the urban fabric. Yet, a complete ...
Future climate will be characterized by an increase in frequency and duration of drought and warming that exacerbates atmospheric evaporative demand. How trees acclimate to long-term soil moisture changes and whether these long-term changes alter trees' se ...