In traditional logic, a contradiction occurs when a proposition conflicts either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's law of noncontradiction states that "It is impossible that the same thing can at the same time both belong and not belong to the same object and in the same respect." In modern formal logic and type theory, the term is mainly used instead for a single proposition, often denoted by the falsum symbol ; a proposition is a contradiction if false can be derived from it, using the rules of the logic. It is a proposition that is unconditionally false (i.e., a self-contradictory proposition). This can be generalized to a collection of propositions, which is then said to "contain" a contradiction. By creation of a paradox, Plato's Euthydemus dialogue demonstrates the need for the notion of contradiction. In the ensuing dialogue, Dionysodorus denies the existence of "contradiction", all the while that Socrates is contradicting him: I in my astonishment said: What do you mean Dionysodorus? I have often heard, and have been amazed to hear, this thesis of yours, which is maintained and employed by the disciples of Protagoras and others before them, and which to me appears to be quite wonderful, and suicidal as well as destructive, and I think that I am most likely to hear the truth about it from you. The dictum is that there is no such thing as a falsehood; a man must either say what is true or say nothing. Is not that your position? Indeed, Dionysodorus agrees that "there is no such thing as false opinion ... there is no such thing as ignorance", and demands of Socrates to "Refute me." Socrates responds "But how can I refute you, if, as you say, to tell a falsehood is impossible?". In classical logic, particularly in propositional and first-order logic, a proposition is a contradiction if and only if . Since for contradictory it is true that for all (because ), one may prove any proposition from a set of axioms which contains contradictions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (18)
MATH-381: Mathematical logic
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-329: Continuous optimization
This course introduces students to continuous, nonlinear optimization. We study the theory of optimization with continuous variables (with full proofs), and we analyze and implement important algorith
Show more
Related lectures (28)
Propositional Logic: Translations and Equivalences
Covers translating natural language to propositional logic and proving tautologies.
Algorithms & Growth of Functions
Covers optimization algorithms, stable matching, and Big-O notation for algorithm efficiency.
Propositional Logic: Summary of Week 1
Introduces propositional logic, logical connectives, implications, and equivalences, with examples and facts about tautology and contradiction.
Show more
Related publications (19)

Between the Pattern and the Type: A short parallel story

Vasileios Chanis

Historically speaking, the notion of the type was reintroduced to the larger architectural discourse as a direct consequence of the crisis of the Modern. The task of revisiting the forms of the past also dictated the return of architectural methods that ha ...
2023

Computational Studies of the Proton-Coupled Metal Ion Transport in the SLC11/NRAMP Family of Transporters

Maria Letizia Merlini

In the last years, it has been demonstrated a link between the overload of metal ions inside nervous system cells and the onset of severe neurodegenerative diseases. This prompted the investigation of the structural and functional properties of transporter ...
EPFL2022

A logarithmic epiperimetric inequality for the obstacle problem

Maria Colombo

We study the regularity of the regular and of the singular set of the obstacle problem in any dimension. Our approach is related to the epiperimetric inequality of Weiss (Invent Math 138:23-50, Wei99a), which works at regular points and provides an alterna ...
2018
Show more
Related concepts (25)
Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
Tautology (logic)
In mathematical logic, a tautology (from ταυτολογία) is a formula or assertion that is true in every possible interpretation. An example is "x=y or x≠y". Similarly, "either the ball is green, or the ball is not green" is always true, regardless of the colour of the ball. The philosopher Ludwig Wittgenstein first applied the term to redundancies of propositional logic in 1921, borrowing from rhetoric, where a tautology is a repetitive statement.
Law of noncontradiction
In logic, the law of non-contradiction (LNC) (also known as the law of contradiction, principle of non-contradiction (PNC), or the principle of contradiction) states that contradictory propositions cannot both be true in the same sense at the same time, e. g. the two propositions "p is the case" and "p is not the case" are mutually exclusive. Formally, this is expressed as the tautology ¬(p ∧ ¬p). The law is not to be confused with the law of excluded middle which states that at least one, "p is the case" or "p is not the case" holds.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.