Résumé
En logique des propositions, une contradiction ou antilogie est une formule qui est toujours fausse, quelle que soit la valeur des variables propositionnelles. On dit aussi que la formule est insatisfaisable, antilogique ou encore contradictoire. L’antilogie, de symbole , s’oppose à la tautologie qui est toujours vraie. La contradiction est une relation existant entre deux ou plusieurs termes ou deux ou plusieurs propositions dont l’un(e) affirme ce que l’autre nie : « A » et « non-A » sont contradictoires, les phrases « Tous les hommes sont barbus » et « Quelques hommes ne sont pas barbus » sont contradictoires. En logique formelle (c.-à-d. lorsque la proposition est exprimée dans le langage formel des mathématiques), la phrase « A et non-A » est l'exemple le plus caractéristique de contradiction. En définitive, toute contradiction peut être reformulée sous cette forme. La logique formelle rejette la contradiction comme une absurdité. Ainsi à partir du théorème du calcul des propositions, n'importe quoi dérive d'une contradiction. La démonstration est la suivante : A ; prémisse non A ; prémisse contradictoire avec A non A ⇒ (non A ou B) non A ⇒ (A ⇒ B) A ⇒ B ; car non A est une prémisse B ; car A est une prémisse C'est l'explosion logique. Un système d'axiomes qui permet de démontrer un théorème qui est une contradiction permet de démontrer n'importe quoi (par exemple que 1=0, ou 1=1, ou 1=2, etc.). Un tel système d'axiomes n'a donc aucun intérêt. « A est non-A » est une phrase fausse. Autrement dit, il est possible de démontrer à l'aide du calcul des propositions que le contraire d'une contradiction est toujours vrai. Ceci est utilisé dans le cadre du raisonnement par l'absurde. Le principe de non-contradiction est la loi qui veut qu’on ne peut affirmer et nier simultanément le même terme ou la même proposition : « Il est impossible qu’un même attribut appartienne et n’appartienne pas en même temps et sous le même rapport à une même chose ». Il faut savoir que la dialectique n'exclut pas la logique formelle.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.