**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Maria Colombo

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

People doing similar research (90)

Courses taught by this person (1)

Learn the basis of Lebesgue integration and Fourier analysis

Related research domains (21)

Navier–Stokes equations

The Navier–Stokes equations (nævˈjeː_stəʊks ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier an

Vector field

In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb{R}^n. A vector

Axiom of regularity

In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo–Fraenkel set theory that states that every non-empty set A contains an element that is disjoint

Related publications (51)

Loading

Loading

Loading

Related units (4)

Maria Colombo, Luigi De Rosa, Massimo Sorella

In this work we show that, in the class of L-infinity((0,T); L-2(T-3)) distributional solutions of the incompressible Navier-Stokes system, the ones which are smooth in some open interval of times are meagre in the sense of Baire category, and the Leray ones are a nowhere dense set.

,

In the class of Sobolev vector fields in R-n of bounded divergence, for which the theory of DiPerna and Lions provides a well defined notion of flow, we characterize the vector fields whose flow commutes in terms of the Lie bracket and of a regularity condition on the flows themselves. This extends a classical result of Frobenius in the smooth setting. (C) 2021 Elsevier Masson SAS. All rights reserved.