In aeronautics, an aircraft propeller, also called an airscrew, converts rotary motion from an engine or other power source into a swirling slipstream which pushes the propeller forwards or backwards. It comprises a rotating power-driven hub, to which are attached several radial airfoil-section blades such that the whole assembly rotates about a longitudinal axis. The blade pitch may be fixed, manually variable to a few set positions, or of the automatically variable "constant-speed" type. The propeller attaches to the power source's driveshaft either directly or through reduction gearing. Propellers can be made from wood, metal or composite materials. Propellers are most suitable for use at subsonic airspeeds generally below about , although supersonic speeds were achieved in the McDonnell XF-88B experimental propeller-equipped aircraft. Supersonic tip-speeds are used in some aircraft like the Tupolev Tu-95, which can reach . Early flying machines The earliest references for vertical flight came from China. Since around 400 BC, Chinese children have played with bamboo flying toys. This bamboo-copter is spun by rolling a stick attached to a rotor between one's hands. The spinning creates lift, and the toy flies when released. The 4th-century AD Daoist book Baopuzi by Ge Hong (抱朴子 "Master who Embraces Simplicity") reportedly describes some of the ideas inherent to rotary wing aircraft. Designs similar to the Chinese helicopter toy appeared in Renaissance paintings and other works. It was not until the early 1480s, when Leonardo da Vinci created a design for a machine that could be described as an "aerial screw", that any recorded advancement was made towards vertical flight. His notes suggested that he built small flying models, but there were no indications for any provision to stop the rotor from making the craft rotate. As scientific knowledge increased and became more accepted, man continued to pursue the idea of vertical flight. Many of these later models and machines would more closely resemble the ancient bamboo flying top with spinning wings, rather than Leonardo's screw.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
MATH-101(en): Analysis I (English)
We study the fundamental concepts of analysis, calculus and the integral of real-valued functions of a real variable.
PHYS-101(j): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
MATH-189: Mathematics
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
Show more
Related lectures (32)
Properties of Real Numbers: Bounds, Density, Absolute Value
Covers the properties of real numbers, including bounds, density, and absolute value.
Swiss Solar Boat: Propulsion Characterization
Covers the characterization of the propulsion system of the Swiss Solar Boat.
Applications of Rigid Body: Rotation Examples
Covers applications of rigid body rotation, including energy storage and gyroscopic stability.
Show more
Related publications (38)

Data from: Optimal blade pitch control for enhanced vertical-axis wind turbine performance

Karen Ann J Mulleners, Sébastien Le Fouest

This directory contains open-source data obtained using a single-bladed H-type vertical-axis wind turbine prototype with individual blade pitching. This data results from the optimisation of the blade's pitching kinematics using a genetic algorithm at two ...
Zenodo2024

Optimal blade pitch control for enhanced vertical-axis wind turbine performance

Karen Ann J Mulleners, Sébastien Le Fouest

Vertical-axis wind turbines are great candidates to enable wind power extraction in urban and off-shore applications. Currently, concerns around turbine efficiency and structural integrity limit their industrial deployment. Flow control can mitigate these ...
2024

Heading for the Abyss: Control Strategies for Exploiting Swinging of a Descending Tethered Aerial Robot

Josephine Anna Eleanor Hughes, Max Mirko Polzin, Frank Centamori

The use of aerial vehicles for exploration and data collection has the potential to significantly aid environmental monitoring in environments which are dangerous and hard to navigate. However, within these environments navigation can often be restricted b ...
2023
Show more
Related concepts (17)
Wright Flyer
The Wright Flyer (also known as the Kitty Hawk, Flyer I or the 1903 Flyer) made the first sustained flight by a manned heavier-than-air powered and controlled aircraft—an airplane—on December 17, 1903. Invented and flown by brothers Orville and Wilbur Wright, it marked the beginning of the pioneer era of aviation. The aircraft is a single-place biplane design with anhedral (drooping) wings, front elevator (a canard) and rear rudder. It used a 12 horsepower gasoline engine powering two pusher propellers.
Aerodynamic force
In fluid mechanics, an aerodynamic force is a force exerted on a body by the air (or other gas) in which the body is immersed, and is due to the relative motion between the body and the gas. There are two causes of aerodynamic force: the normal force due to the pressure on the surface of the body the shear force due to the viscosity of the gas, also known as skin friction. Pressure acts normal to the surface, and shear force acts parallel to the surface. Both forces act locally.
Variable-pitch propeller (aeronautics)
In aeronautics, a variable-pitch propeller is a type of propeller (airscrew) with blades that can be rotated around their long axis to change the blade pitch. A controllable-pitch propeller is one where the pitch is controlled manually by the pilot. Alternatively, a constant-speed propeller is one where the pilot sets the desired engine speed (RPM), and the blade pitch is controlled automatically without the pilot's intervention so that the rotational speed remains constant.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.