Concept

Slow earthquake

Summary
A slow earthquake is a discontinuous, earthquake-like event that releases energy over a period of hours to months, rather than the seconds to minutes characteristic of a typical earthquake. First detected using long term strain measurements, most slow earthquakes now appear to be accompanied by fluid flow and related tremor, which can be detected and approximately located using seismometer data filtered appropriately (typically in the 1–5 Hz band). That is, they are quiet compared to a regular earthquake, but not "silent" as described in the past. Slow earthquakes should not be confused with tsunami earthquakes, in which relatively slow rupture velocity produces tsunami out of proportion to the triggering earthquake. In a tsunami earthquake, the rupture propagates along the fault more slowly than usual, but the energy release occurs on a similar timescale to other earthquakes. TOC Earthquakes occur as a consequence of gradual stress increases in a region, and once it reaches the maximum stress that the rocks can withstand a rupture generates and the resulting earthquake motion is related to a drop in the shear stress of the system. Earthquakes generate seismic waves when the rupture in the system occurs, the seismic waves consist of different types of waves that are capable of moving through the Earth like ripples over water. The causes that lead to slow earthquakes have only been theoretically investigated, by the formation of longitudinal shear cracks that were analysed using mathematical models. The different distributions of initial stress, sliding frictional stress, and specific fracture energy are all taken into account. If the initial stress minus the sliding frictional stress (with respect to the initial crack) is low, and the specific fracture energy or the strength of the crustal material (relative to the amount of stress) is high then slow earthquakes will occur regularly. In other words, slow earthquakes are caused by a variety of stick-slip and creep processes intermediated between asperity-controlled brittle and ductile fracture.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
ME-801: Mechanics of earthquakes and aseismic slip
Fundamentals of fracture and friction. Numerical methods for models of earthquakes and aseismic slip. Geophysical observations/measurements. Aseismic slip and slow slip events: models and observations
ME-615: Introduction to earthquake source physics
This course presents the classical and new approaches required to study the source mechanisms of earthquakes, combining theory and observations in a unified methodology, with a key focus on the mechan
CIVIL-522: Seismic engineering
This course deals with the main aspects of seismic design and assessment of buildings including conceptual design. It covers different structural design and evaluation philosophies for new and existin
Show more
Related lectures (30)
Earthquake Risk Analysis and Management
Covers risk analysis and management related to earthquakes, focusing on the 2015 Nepal earthquake.
Earthquake: Ground Movement and Seismic Engineering
Explores ground movement during earthquakes, seismic hazard, and engineering concepts.
Effects of an Earthquake
Explores the effects of earthquakes and earthquake damage to structures.
Show more
Related publications (143)

Fault roughness controls injection-induced seismicity

Simon Guérin-Marthe, Lei Wang

Surface roughness ubiquitously prevails in natural faults across various length scales. Despite extensive studies highlighting the important role of fault geometry in the dynamics of tectonic earthquakes, whether and how fault roughness affects fluid-induc ...
Washington2024

Stick-slip-to-stick transition of liquid oscillations in a U-shaped tube

François Gallaire, Alessandro Bongarzone

The nonlinear decay of oscillations of a liquid column in a U-shaped tube is investigated within the theoretical framework of the projection method formalized by Bongarzone et al. [Chaos 31, 123124 (2021)]. Starting from the full hydrodynamic system supple ...
Amer Physical Soc2024

Reducing uncertainties in response predictions of earthquake-damaged masonry buildings using data from image-based inspection

Ian Smith, Katrin Beyer, Bryan German Pantoja Rosero, Mathias Christian Haindl Carvallo

Image information about the state of a building after an earthquake, which can be collected without endangering the post-earthquake reconnaissance activities, can be used to reduce uncertainties in response predictions for future seismic events. This paper ...
Springer2024
Show more
Related concepts (1)
Earthquake
An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, from those that are so weak that they cannot be felt, to those violent enough to propel objects and people into the air, damage critical infrastructure, and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time.
Related MOOCs (1)
A Resilient Future: Science and Technology for Disaster Risk Reduction
Learn how science and technology are helping reduce our risk of disasters.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.