Automobile handling and vehicle handling are descriptions of the way a wheeled vehicle responds and reacts to the inputs of a driver, as well as how it moves along a track or road. It is commonly judged by how a vehicle performs particularly during cornering, acceleration, and braking as well as on the vehicle's directional stability when moving in steady state condition.
In the automotive industry, handling and braking are the major components of a vehicle's "active" safety, as well as its ability to perform in auto racing. The maximum lateral acceleration is sometimes discussed separately as "road holding". (This discussion is directed at road vehicles with at least three wheels, but some of it may apply to other ground vehicles). Automobiles driven on public roads whose engineering requirements emphasize handling over comfort and passenger space are named sports cars.
Weight distribution
The centre of mass height, also known as the centre of gravity height, or CGZ, relative to the track, determines load transfer (related to, but not exactly weight transfer) from side to side and causes body lean. When tires of a vehicle provide a centripetal force to pull it around a turn, the momentum of the vehicle actuates load transfer in a direction going from the vehicle's current position to a point on a path tangent to the vehicle's path. This load transfer presents itself in the form of body lean. In extreme circumstances, the vehicle may roll over.
Height of the centre of mass relative to the wheelbase determines load transfer between front and rear. The car's momentum acts at its centre of mass to tilt the car forward or backward, respectively during braking and acceleration. Since it is only the downward force that changes and not the location of the centre of mass, the effect on over/under steer is opposite to that of an actual change in the centre of mass. When a car is braking, the downward load on the front tires increases and that on the rear decreases, with corresponding change in their ability to take sideways load.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
The roll center of a vehicle is the notional point at which the cornering forces in the suspension are reacted to the vehicle body. There are two definitions of roll center. The most commonly used is the geometric (or kinematic) roll center, whereas the Society of Automotive Engineers uses a force-based definition. Geometric roll center is solely dictated by the suspension geometry, and can be found using principles of the instant center of rotation.
For motorized vehicles, such as automobiles, aircraft, and watercraft, vehicle dynamics is the study of vehicle motion, e.g., how a vehicle's forward movement changes in response to driver inputs, propulsion system outputs, ambient conditions, air/surface/water conditions, etc. Vehicle dynamics is a part of engineering primarily based on classical mechanics. The aspects of a vehicle's design which affect the dynamics can be grouped into drivetrain and braking, suspension and steering, distribution of mass, aerodynamics and tires.
Suspension is the system of tires, tire air, springs, shock absorbers and linkages that connects a vehicle to its wheels and allows relative motion between the two. Suspension systems must support both road holding/handling and ride quality, which are at odds with each other. The tuning of suspensions involves finding the right compromise. It is important for the suspension to keep the road wheel in contact with the road surface as much as possible, because all the road or ground forces acting on the vehicle do so through the contact patches of the tires.
Explores Real-Time Nonlinear Model Predictive Control for fast mechatronic systems and its applications in rocket control, autonomous parking, and racing.
The main goal of my research is to establish guidelines for workplace design based on human biomechanics: specifically sitting workplaces and handling areas in 1/6G-1/3G (Moon, Mars) conditions. Such a workplace could be used in long-term space missions in ...
The present invention relates to a motor-wheel for an omni-directional motion vehicle, comprising a ring-shaped structure with a central axis, presenting an outer radial surface and an inner radial surface, whereby the outer radial surface comprises a plur ...
2020
, ,
Path-following control is a critical technology for autonomous vehicles. However, time-varying parameters, parametric uncertainties, external disturbances, and complicated environments significantly challenge autonomous driving. We propose an iterative rob ...