Summary
In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group G to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups. Modular forms are holomorphic automorphic forms defined over the groups SL(2, R) or PSL(2, R) with the discrete subgroup being the modular group, or one of its congruence subgroups; in this sense the theory of automorphic forms is an extension of the theory of modular forms. More generally, one can use the adelic approach as a way of dealing with the whole family of congruence subgroups at once. From this point of view, an automorphic form over the group G(AF), for an algebraic group G and an algebraic number field F, is a complex-valued function on G(AF) that is left invariant under G(F) and satisfies certain smoothness and growth conditions. Poincaré first discovered automorphic forms as generalizations of trigonometric and elliptic functions. Through the Langlands conjectures automorphic forms play an important role in modern number theory. In mathematics, the notion of factor of automorphy arises for a group acting on a complex-analytic manifold. Suppose a group acts on a complex-analytic manifold . Then, also acts on the space of holomorphic functions from to the complex numbers. A function is termed an automorphic form if the following holds: where is an everywhere nonzero holomorphic function. Equivalently, an automorphic form is a function whose divisor is invariant under the action of . The factor of automorphy for the automorphic form is the function . An automorphic function is an automorphic form for which is the identity. An automorphic form is a function F on G (with values in some fixed finite-dimensional vector space V, in the vector-valued case), subject to three kinds of conditions: to transform under translation by elements according to the given factor of automorphy j; to be an eigenfunction of certain Casimir operators on G; and to satisfy a "moderate growth" asymptotic condition a height function.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.