In the physical sciences, a partition coefficient (P) or distribution coefficient (D) is the ratio of concentrations of a compound in a mixture of two immiscible solvents at equilibrium. This ratio is therefore a comparison of the solubilities of the solute in these two liquids. The partition coefficient generally refers to the concentration ratio of un-ionized species of compound, whereas the distribution coefficient refers to the concentration ratio of all species of the compound (ionized plus un-ionized).
In the chemical and pharmaceutical sciences, both phases usually are solvents. Most commonly, one of the solvents is water, while the second is hydrophobic, such as 1-octanol. Hence the partition coefficient measures how hydrophilic ("water-loving") or hydrophobic ("water-fearing") a chemical substance is. Partition coefficients are useful in estimating the distribution of drugs within the body. Hydrophobic drugs with high octanol-water partition coefficients are mainly distributed to hydrophobic areas such as lipid bilayers of cells. Conversely, hydrophilic drugs (low octanol/water partition coefficients) are found primarily in aqueous regions such as blood serum.
If one of the solvents is a gas and the other a liquid, a gas/liquid partition coefficient can be determined. For example, the blood/gas partition coefficient of a general anesthetic measures how easily the anesthetic passes from gas to blood. Partition coefficients can also be defined when one of the phases is solid, for instance, when one phase is a molten metal and the second is a solid metal, or when both phases are solids. The partitioning of a substance into a solid results in a solid solution.
Partition coefficients can be measured experimentally in various ways (by shake-flask, HPLC, etc.) or estimated by calculation based on a variety of methods (fragment-based, atom-based, etc.).
If a substance is present as several chemical species in the partition system due to association or dissociation, each species is assigned its own Kow value.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In organic chemistry, the Hammett equation describes a linear free-energy relationship relating reaction rates and equilibrium constants for many reactions involving benzoic acid derivatives with meta- and para-substituents to each other with just two parameters: a substituent constant and a reaction constant. This equation was developed and published by Louis Plack Hammett in 1937 as a follow-up to qualitative observations in his 1935 publication.
The n-octanol-water partition coefficient, Kow is a partition coefficient for the two-phase system consisting of n-octanol and water. Kow is also frequently referred to by the symbol P, especially in the English literature. It is also called n-octanol-water partition ratio. Kow serves as a measure of the relationship between lipophilicity (fat solubility) and hydrophilicity (water solubility) of a substance. The value is greater than one if a substance is more soluble in fat-like solvents such as n-octanol, and less than one if it is more soluble in water.
Quantitative structure–activity relationship models (QSAR models) are regression or classification models used in the chemical and biological sciences and engineering. Like other regression models, QSAR regression models relate a set of "predictor" variables (X) to the potency of the response variable (Y), while classification QSAR models relate the predictor variables to a categorical value of the response variable.
This course introduces the basic principles of bioprocess engineering and highlights the similarities and differences with chemical engineering. Without going into the fundamentals, it proposes an ove
This course aims at a more advanced coverage of the basic aspects discussed in module ChE-311. It is however of a stand-alone nature, and even students who have little knowledge on - but a keen intere
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
Covers free meshing algorithms, partitioning, and incompatible meshes in 3D simulations, emphasizing the importance of mesh quality and element compatibility.
Explores the partitioning of organic compounds and their solubility in different phases, considering factors like chain length, size, and halogenation.
The uptake of glyoxal (Gly) on 28 different samples with varying mineralogical origins, such as clays, mineral proxies, and natural dusts from the major arid regions of the Earth, was determined. Experiments were performed at ambient temperature inside a K ...
Bioaccumulation is defined as the enrichment of a compound in an organism relative to the surrounding water or its food, and is an important endpoint in chemical risk assessment. Under laboratory conditions, bioaccumulation is measured as bioconcentration ...
Hydrochemical data of karst springs provide valuable insights into the internal hydrodynamical functioning of karst systems and support model structure identification. However, the collection of high-frequency time series of major solute species is limited ...