In organic chemistry, the Hammett equation describes a linear free-energy relationship relating reaction rates and equilibrium constants for many reactions involving benzoic acid derivatives with meta- and para-substituents to each other with just two parameters: a substituent constant and a reaction constant. This equation was developed and published by Louis Plack Hammett in 1937 as a follow-up to qualitative observations in his 1935 publication.
The basic idea is that for any two reactions with two aromatic reactants only differing in the type of substituent, the change in free energy of activation is proportional to the change in Gibbs free energy. This notion does not follow from elemental thermochemistry or chemical kinetics and was introduced by Hammett intuitively.
The basic equation is:
where
= Reference constant
= Substituent constant
= Reaction rate constant
relating the equilibrium constant, , for a given equilibrium reaction with substituent R and the reference constant when R is a hydrogen atom to the substituent constant σ which depends only on the specific substituent R and the reaction rate constant ρ which depends only on the type of reaction but not on the substituent used.
The equation also holds for reaction rates k of a series of reactions with substituted benzene derivatives:
In this equation is the reference reaction rate of the unsubstituted reactant, and k that of a substituted reactant.
A plot of for a given equilibrium versus for a given reaction rate with many differently substituted reactants will give a straight line.
The starting point for the collection of the substituent constants is a chemical equilibrium for which the substituent constant is arbitrarily set to 0 and the reaction constant is set to 1: the deprotonation of benzoic acid or benzene carboxylic acid (R and R' both H) in water at 25 °C.
Having obtained a value for K0, a series of equilibrium constants (K) are now determined based on the same process, but now with variation of the para substituent—for instance, or .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
To develop basic understanding of the reactivity of aromatic and heteroaromatic compounds. To develop a knowledge of a class of pericyclic reactions. To apply them in the context of the synthesis.
This course introduces modern computational electronic structure methods and their broad applications to organic chemistry. It also discusses physical organic concepts to illustrate the stability and
La première partie du cours décrit les méthodes classiques de synthèse asymétrique. La seconde partie du cours traite des stratégies de rétrosynthèse basées sur l'approche par disconnection.
In physical organic chemistry, a free-energy relationship or Gibbs energy relation relates the logarithm of a reaction rate constant or equilibrium constant for one series of chemical reactions with the logarithm of the rate or equilibrium constant for a related series of reactions. Free energy relationships establish the extent at which bond formation and breakage happen in the transition state of a reaction, and in combination with kinetic isotope experiments a reaction mechanism can be determined.
In chemistry, the inductive effect in a molecule is a local change in the electron density due to electron-withdrawing or electron-donating groups elsewhere in the molecule, resulting in a permanent dipole in a bond. It is present in a σ (sigma) bond, unlike the electromeric effect which is present in a π (pi) bond. The halogen atoms in an alkyl halide are electron withdrawing while the alkyl groups have electron donating tendencies.
In chemistry, the mesomeric effect (or resonance effect) is a property of substituents or functional groups in a chemical compound. It is defined as the polarity produced in the molecule by the interaction of two pi bonds or between a pi bond and lone pair of electrons present on an adjacent atom. This change in electron arrangement results in the formation of resonance structures that hybridize into the molecule's true structure. The pi electrons then move away from or toward a particular substituent group.
Covers aromatic chemistry, molecular orbitals, and electrophilic substitution reactions in organic compounds, emphasizing the importance of understanding reaction mechanisms and predicting reactivity.
To examine whether suitable conditions occur for the water splitting reaction at their interfaces with liquid water, we determine the pH-dependent surface coverage for a series of semiconductors, including GaAs, GaP, GaN, CdS, ZnO, SnO2, and rutile and ana ...
Borylated triazenes were synthesized by the dehydrocoupling of triazenes with 9-borabicyclo(3.3.1)nonane, by the condensation of triazenes with BEt3, or by the reaction of sodium triazenides with dialkyl- or diarylboron halides. The structures of the produ ...
Peracetic acid (PAA) in combination with transition metals has recently gained increasing attention for organic micropollutant abatement. In this study, aqueous Co(II), Cu(II), and Ag(I) were compared for their capacity to activate PAA. Co(II) outperformed ...