The Tafel equation is an equation in electrochemical kinetics relating the rate of an electrochemical reaction to the overpotential. The Tafel equation was first deduced experimentally and was later shown to have a theoretical justification. The equation is named after Swiss chemist Julius Tafel." It describes how the electrical current through an electrode depends on the voltage difference between the electrode and the bulk electrolyte for a simple, unimolecular redox reaction ".
Where an electrochemical reaction occurs in two half reactions on separate electrodes, the Tafel equation is applied to each electrode separately. On a single electrode the Tafel equation can be stated as:
where
the plus sign under the exponent refers to an anodic reaction, and a minus sign to a cathodic reaction,
overpotential, V
"Tafel slope", V
current density, A/m2
"exchange current density", A/m2.
A verification plus further explanation for this equation can be found here. The Tafel equation is an approximation of the Butler-Volmer equation in the case of . "[ The Tafel equation ] assumes that the concentrations at the electrode are practically equal to the concentrations in the bulk electrolyte, allowing the current to be expressed as a function of potential only. In other words, it assumes that the electrode mass transfer rate is much greater than the reaction rate, and that the reaction is dominated by the slower chemical reaction rate ". Also, at a given electrode the Tafel equation assumes that the reverse half reaction rate is negligible compared to the forward reaction rate.
The exchange current is the current at equilibrium, i.e. the rate at which oxidized and reduced species transfer electrons with the electrode. In other words, the exchange current density is the rate of reaction at the reversible potential (when the overpotential is zero by definition). At the reversible potential, the reaction is in equilibrium meaning that the forward and reverse reactions progress at the same rates. This rate is the exchange current density.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les étudiants intègrent les notions de potentiels électriques, de niveau de Fermi de l'électron et appliquent l'équation de Nernst. Ils comprennent la structure d'une interface électrifiée. Les généra
This course builds upon the underlying theory in thermodynamics, reaction kinetics, and transport and applies these methods to electrosynthesis, fuel cell, and battery applications. Special focus is p
Fundamental principles and methods used for physiological signal conditioning. Electrode, optical, resistive, capacitive, inductive, and piezoelectric sensor techniques used to detect and convert phys
Electrochemical kinetics is the field of electrochemistry that studies the rate of electrochemical processes. This includes the study of how process conditions, such as concentration and electric potential, influence the rate of oxidation and reduction (redox) reactions that occur at the surface of an electrode, as well as an investigation into electrochemical reaction mechanisms.
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing reduction and oxidation respectively. It was named after Walther Nernst, a German physical chemist who formulated the equation.
Silver is one of the most studied electrode materials for the electrochemical reduction of carbon dioxide into carbon monoxide, a product with many industrial applications. There is a growing number of reports in which silver is implemented in gas diffusio ...
High-entropy materials are a new class of materials that have lately been developed and applied to a variety of potential fields. Here we present that electrochemical activation facilitates the application of high-entropy molybdates (HEMo) as oxygen evolut ...
Realizing a hydrogen economy strongly requires alkaline water electrolysis to achieve large-scale generation of H2, but lacks stable and efficient catalysts. The insufficient active sites in Ni(OH)2 impair the catalytic performance of alkaline HER. Herein, ...