The quantum potential or quantum potentiality is a central concept of the de Broglie–Bohm formulation of quantum mechanics, introduced by David Bohm in 1952.
Initially presented under the name quantum-mechanical potential, subsequently quantum potential, it was later elaborated upon by Bohm and Basil Hiley in its interpretation as an information potential which acts on a quantum particle. It is also referred to as quantum potential energy, Bohm potential, quantum Bohm potential or Bohm quantum potential.
In the framework of the de Broglie–Bohm theory, the quantum potential is a term within the Schrödinger equation which acts to guide the movement of quantum particles. The quantum potential approach introduced by Bohm provides a physically less fundamental exposition of the idea presented by Louis de Broglie: de Broglie had postulated in 1925 that the relativistic wave function defined on spacetime represents a pilot wave which guides a quantum particle, represented as an oscillating peak in the wave field, but he had subsequently abandoned his approach because he was unable to derive the guidance equation for the particle from a non-linear wave equation. The seminal articles of Bohm in 1952 introduced the quantum potential and included answers to the objections which had been raised against the pilot wave theory.
The Bohm quantum potential is closely linked with the results of other approaches, in particular relating to work by Erwin Madelung of 1927 and to work by Carl Friedrich von Weizsäcker of 1935.
Building on the interpretation of the quantum theory introduced by Bohm in 1952, David Bohm and Basil Hiley in 1975 presented how the concept of a quantum potential leads to the notion of an "unbroken wholeness of the entire universe", proposing that the fundamental new quality introduced by quantum physics is nonlocality.
The Schrödinger equation
is re-written using the polar form for the wave function with real-valued functions and , where is the amplitude (absolute value) of the wave function , and its phase.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
The de Broglie–Bohm theory, also known as the pilot wave theory, Bohmian mechanics, Bohm's interpretation, and the causal interpretation, is an interpretation of quantum mechanics. In addition to the wavefunction, it also postulates an actual configuration of particles exists even when unobserved. The evolution over time of the configuration of all particles is defined by a guiding equation. The evolution of the wave function over time is given by the Schrödinger equation.
In modern physics, the double-slit experiment demonstrates that light and matter can satisfy the seemingly-incongruous classical definitions for both waves and particles, which is considered evidence for the fundamentally probabilistic nature of quantum mechanics. This type of experiment was first performed by Thomas Young in 1801, as a demonstration of the wave behavior of visible light. At that time it was thought that light consisted of either waves or particles.
Wave–particle duality is the concept in quantum mechanics that quantum entities exhibit both particle and a wave properties according to the experimental circumstances. It expresses the inability of the classical concepts "particle" or "wave" to fully describe the behaviour of quantum-scale objects. As Albert Einstein wrote: It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty.
The nature of the bulk hydrated electron has been a challenge for both experiment and theory due to its short lifetime and high reactivity, and the need for a high-level of electronic structure theory to achieve predictive accuracy. The lack of a classical ...
The dynamics of open quantum systems is often modeled using master equations, which describe the expected outcome of an experiment (i.e., the average over many realizations of the same dynamics). Quantum trajectories, instead, model the outcome of ideal si ...
The exploration of open quantum many-body systems -systems of microscopic size exhibiting quantum coherence and interacting with their surrounding- has emerged as a key research area over the last years. The recent advances in controlling and preserving qu ...