Concept

Quantum potential

Summary
The quantum potential or quantum potentiality is a central concept of the de Broglie–Bohm formulation of quantum mechanics, introduced by David Bohm in 1952. Initially presented under the name quantum-mechanical potential, subsequently quantum potential, it was later elaborated upon by Bohm and Basil Hiley in its interpretation as an information potential which acts on a quantum particle. It is also referred to as quantum potential energy, Bohm potential, quantum Bohm potential or Bohm quantum potential. In the framework of the de Broglie–Bohm theory, the quantum potential is a term within the Schrödinger equation which acts to guide the movement of quantum particles. The quantum potential approach introduced by Bohm provides a physically less fundamental exposition of the idea presented by Louis de Broglie: de Broglie had postulated in 1925 that the relativistic wave function defined on spacetime represents a pilot wave which guides a quantum particle, represented as an oscillating peak in the wave field, but he had subsequently abandoned his approach because he was unable to derive the guidance equation for the particle from a non-linear wave equation. The seminal articles of Bohm in 1952 introduced the quantum potential and included answers to the objections which had been raised against the pilot wave theory. The Bohm quantum potential is closely linked with the results of other approaches, in particular relating to work by Erwin Madelung of 1927 and to work by Carl Friedrich von Weizsäcker of 1935. Building on the interpretation of the quantum theory introduced by Bohm in 1952, David Bohm and Basil Hiley in 1975 presented how the concept of a quantum potential leads to the notion of an "unbroken wholeness of the entire universe", proposing that the fundamental new quality introduced by quantum physics is nonlocality. The Schrödinger equation is re-written using the polar form for the wave function with real-valued functions and , where is the amplitude (absolute value) of the wave function , and its phase.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.