Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. This process thereby changes a nuclear proton to a neutron and simultaneously causes the emission of an electron neutrino. Proton + Electron → Neutron + Electron Neutrino or when written as a nuclear reaction equation, ^{0}{-1}e + ^{1}{1}p -> ^{1}{0}n + ^{0}{0} ν Since this single emitted neutrino carries the entire decay energy, it has this single characteristic energy. Similarly, the momentum of the neutrino emission causes the daughter atom to recoil with a single characteristic momentum. The resulting daughter nuclide, if it is in an excited state, then transitions to its ground state. Usually, a gamma ray is emitted during this transition, but nuclear de-excitation may also take place by internal conversion. Following capture of an inner electron from the atom, an outer electron replaces the electron that was captured and one or more characteristic X-ray photons is emitted in this process. Electron capture sometimes also results in the Auger effect, where an electron is ejected from the atom's electron shell due to interactions between the atom's electrons in the process of seeking a lower energy electron state. Following electron capture, the atomic number is reduced by one, the neutron number is increased by one, and there is no change in mass number. Simple electron capture by itself results in a neutral atom, since the loss of the electron in the electron shell is balanced by a loss of positive nuclear charge. However, a positive atomic ion may result from further Auger electron emission. Electron capture is an example of weak interaction, one of the four fundamental forces. Electron capture is the primary decay mode for isotopes with a relative superabundance of protons in the nucleus, but with insufficient energy difference between the isotope and its prospective daughter (the isobar with one less positive charge) for the nuclide to decay by emitting a positron.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (10)
PHYS-452: Radiation detection
The course presents the detection of ionizing radiation in the keV and MeV energy ranges. Physical processes of radiation/matter interaction are introduced. All steps of detection are covered, as well
PHYS-450: Radiation biology, protection and applications
This is an introductory course in radiation physics that aims at providing students with a foundation in radiation protection and with information about the main applications of radioactive sources/su
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
Show more
Related lectures (30)
Problem Solving in Class: Surface Electron Emission
Explores surface electron emission principles under various light sources and laser intensities.
Interaction of Radiation with Matter
Explores the interaction of radiation with matter, covering ionization, excitation, deexcitation, bremsstrahlung, Cherenkov radiation, and stopping power.
Quantum Physics: Photon Momentum and Photoelectric Effect
Explores quantum radiation, photon momentum, and the photoelectric effect in detail.
Show more
Related publications (130)

A comprehensive analysis of electron emission from a-Si:H/Al2O3 at low energies

Christophe Ballif, Jonathan Emanuel Thomet, Janina Christine Isabelle Löffler, Samira Alexandra Frey, Mohamed Belhaj

Recently developed microchannel plates (MCPs) based on amorphous silicon offer potential advantages with respect to glass based ones. In this context, secondary electron emission (SEE) at very low energies below 100 eV has been studied for relevant materia ...
IOP Publishing Ltd2023

Electromagnetic processes of nuclear excitation: from direct photoabsorption to free electron and muon capture

Simone Gargiulo

In the vast expanse of the Universe and on our planet, nuclei exist in a state of excitement. These excited nuclear states (isomers) can persist for varying periods, from fractions of a second to billions of years and beyond, before decaying to their groun ...
EPFL2023

Generation and control of localized terahertz fields in photoemitted electron plasmas

Fabrizio Carbone, Giovanni Maria Vanacore, Ivan Madan, Ido Kaminer, Simone Gargiulo, Francesco Barantani

Dense micron-sized electron plasmas, such as those generated upon irradiation of nanostructured metallic surfaces by intense femtosecond laser pulses, constitute a rich playground to study light-matter interactions, many-body phenomena, and out-of-equilibr ...
ROYAL SOC CHEMISTRY2023
Show more
Related concepts (20)
Radioactive decay
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay, all of which involve emitting particles. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the electromagnetism and nuclear force.
Isotope
Isotopes are distinct nuclear species (or nuclides, as technical term) of the same element. They have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), but differ in nucleon numbers (mass numbers) due to different numbers of neutrons in their nuclei. While all isotopes of a given element have almost the same chemical properties, they have different atomic masses and physical properties.
Auger effect
The Auger effect or Auger−Meitner effect is a physical phenomenon in which the filling of an inner-shell vacancy of an atom is accompanied by the emission of an electron from the same atom. When a core electron is removed, leaving a vacancy, an electron from a higher energy level may fall into the vacancy, resulting in a release of energy. Although most often this energy is released in the form of an emitted photon, the energy can also be transferred to another electron, which is ejected from the atom; this second ejected electron is called an Auger electron.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.