Genetically modified food controversies are disputes over the use of foods and other goods derived from genetically modified crops instead of conventional crops, and other uses of genetic engineering in food production. The disputes involve consumers, farmers, biotechnology companies, governmental regulators, non-governmental organizations, and scientists. The key areas of controversy related to genetically modified food (GM food or GMO food) are whether such food should be labeled, the role of government regulators, the objectivity of scientific research and publication, the effect of genetically modified crops on health and the environment, the effect on pesticide resistance, the impact of such crops for farmers, and the role of the crops in feeding the world population. In addition, products derived from GMO organisms play a role in the production of ethanol fuels and pharmaceuticals.
Specific concerns include mixing of genetically modified and non-genetically modified products in the food supply, effects of GMOs on the environment, the rigor of the regulatory process, and consolidation of control of the food supply in companies that make and sell GMOs. Advocacy groups such as the Center for Food Safety, Organic Consumers Association, Union of Concerned Scientists, and Greenpeace say risks have not been adequately identified and managed, and they have questioned the objectivity of regulatory authorities.
The safety assessment of genetically engineered food products by regulatory bodies starts with an evaluation of whether or not the food is substantially equivalent to non-genetically engineered counterparts that are already deemed fit for human consumption. No reports of ill effects have been documented in the human population from genetically modified food.
There is a scientific consensus that currently available food derived from GM crops poses no greater risk to human health than conventional food, but that each GM food needs to be tested on a case-by-case basis before introduction.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This hands-on course teaches the tools & methods used by data scientists, from researching solutions to scaling up
prototypes to Spark clusters. It exposes the students to the entire data science pipe
Ce cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
Introduction aux phénomènes propagatifs dans les circuits hydrauliques, calculs de coups de béliers, comportement transitoire d'aménagements hydroélectriques, simulation numériques 1D du comportement
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Syngenta AG is a provider of agricultural science and technology, in particular seeds and pesticides with its management headquarters in Basel, Switzerland. It is owned by ChemChina, a Chinese state-owned enterprise. Syngenta was founded in 2000 by the merger of the agrichemical businesses of Novartis and AstraZeneca, and acquired by China National Chemical Corporation (ChemChina) in 2017. Its business units are Syngenta Crop Protection, Syngenta Seeds, Adama, and Syngenta Group China.
Flavr Savr (also known as CGN-89564-2; pronounced "flavor saver"), a genetically modified tomato, was the first commercially grown genetically engineered food to be granted a license for human consumption. It was developed by the Californian company Calgene in the 1980s. The tomato has an improved shelf-life, increased fungal resistance and a slightly increased viscosity compared to its non-modified counterpart. It was meant to be harvested ripe for increased flavor for long-distance shipping.
Plant breeding is the science of changing the traits of plants in order to produce desired characteristics. It has been used to improve the quality of nutrition in products for humans and animals. The goals of plant breeding are to produce crop varieties that boast unique and superior traits for a variety of applications. The most frequently addressed agricultural traits are those related to biotic and abiotic stress tolerance, grain or biomass yield, end-use quality characteristics such as taste or the concentrations of specific biological molecules (proteins, sugars, lipids, vitamins, fibers) and ease of processing (harvesting, milling, baking, malting, blending, etc.
Focuses on the practical application of Digital Image Correlation for civil engineers, covering measuring displacement fields and computing strain fields.
Covers Spark Data Frames, distributed collections of data organized into named columns, and the benefits of using them over RDDs.
Covers data science tools, Hadoop, Spark, data lake ecosystems, CAP theorem, batch vs. stream processing, HDFS, Hive, Parquet, ORC, and MapReduce architecture.
Cis-genetic effects are key determinants of transcriptional divergence in discrete tissues and cell types. However, how cis- and trans-effects act across continuous trajectories of cellular differentiation in vivo is poorly understood. Here, we quantify al ...
Borrowing some quotes from Harper Lee's novel "To Kill A Mockingbird" to help frame our manuscript, we discuss methods to profile local proteomes. We initially focus on chemical biology regimens that function in live organisms and use reactive biotin speci ...
Wiley-V C H Verlag Gmbh2024
,
We study the glass transition by exploring a broad class of kinetic rules that can significantly modify the normal dynamics of supercooled liquids while maintaining thermal equilibrium. Beyond the usual dynamics of liquids, this class includes dynamics in ...