In metallurgy, solid solution strengthening is a type of alloying that can be used to improve the strength of a pure metal. The technique works by adding atoms of one element (the alloying element) to the crystalline lattice of another element (the base metal), forming a solid solution. The local nonuniformity in the lattice due to the alloying element makes plastic deformation more difficult by impeding dislocation motion through stress fields. In contrast, alloying beyond the solubility limit can form a second phase, leading to strengthening via other mechanisms (e.g. the precipitation of intermetallic compounds).
Depending on the size of the alloying element, a substitutional solid solution or an interstitial solid solution can form. In both cases, atoms are visualised as rigid spheres where the overall crystal structure is essentially unchanged. The rationale of crystal geometry to atom solubility prediction is summarized in the Hume-Rothery rules and Pauling's rules.
Substitutional solid solution strengthening occurs when the solute atom is large enough that it can replace solvent atoms in their lattice positions. Some alloying elements are only soluble in small amounts, whereas some solvent and solute pairs form a solution over the whole range of binary compositions. Generally, higher solubility is seen when solvent and solute atoms are similar in atomic size (15% according to the Hume-Rothery rules) and adopt the same crystal structure in their pure form. Examples of completely miscible binary systems are Cu-Ni and the Ag-Au face-centered cubic (FCC) binary systems, and the Mo-W body-centered cubic (BCC) binary system.
Interstitial solid solutions form when the solute atom is small enough (radii up to 57% the radii of the parent atoms) to fit at interstitial sites between the solvent atoms. The atoms crowd into the interstitial sites, causing the bonds of the solvent atoms to compress and thus deform (this rationale can be explained with Pauling's rules). Elements commonly used to form interstitial solid solutions include H, Li, Na, N, C, and O.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores the mechanical properties and microstructure of aluminum alloys, focusing on the Al-Mg system and the effects of dislocations, grain size, and heat treatment.
Covers the plasticity mechanisms of metals and polymers, including dislocations, solid solution hardening, and work hardening.
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
Présentation des mécanismes de déformation des matériaux inorganiques: élasticité, plasticité, fluage.
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
In materials science, hardness (antonym: softness) is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion. In general, different materials differ in their hardness; for example hard metals such as titanium and beryllium are harder than soft metals such as sodium and metallic tin, or wood and common plastics. Macroscopic hardness is generally characterized by strong intermolecular bonds, but the behavior of solid materials under force is complex; therefore, hardness can be measured in different ways, such as scratch hardness, indentation hardness, and rebound hardness.
Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and some steels, stainless steels, and duplex stainless steel. In superalloys, it is known to cause yield strength anomaly providing excellent high-temperature strength. Precipitation hardening relies on changes in solid solubility with temperature to produce fine particles of an impurity phase, which impede the movement of dislocations, or defects in a crystal's lattice.
In materials science, recrystallization is a process by which deformed grains are replaced by a new set of defect-free grains that nucleate and grow until the original grains have been entirely consumed. Recrystallization is usually accompanied by a reduction in the strength and hardness of a material and a simultaneous increase in the ductility. Thus, the process may be introduced as a deliberate step in metals processing or may be an undesirable byproduct of another processing step.
Recent surging interest in strengthening of High Entropy Alloys (HEAs) with possible chemical ordering motivates the development of new theory. Here, an existing theory for random alloys that accounts for solute-dislocation and solute–solute interactions i ...
We present a new algorithm for imitation learning in infinite horizon linear MDPs dubbed ILARL which greatly improves the bound on the number of trajectories that the learner needs to sample from the environment. In particular, we re- move exploration assu ...
The activation of prismatic slip in Mg and its alloys can be beneficial for deformation and forming. Experiments show that addition of Zn and Al solutes have a softening effect at/below room temperature, attributed to solutes facilitating basal-prism-basal ...