Summary
Addressing modes are an aspect of the instruction set architecture in most central processing unit (CPU) designs. The various addressing modes that are defined in a given instruction set architecture define how the machine language instructions in that architecture identify the operand(s) of each instruction. An addressing mode specifies how to calculate the effective memory address of an operand by using information held in registers and/or constants contained within a machine instruction or elsewhere. In computer programming, addressing modes are primarily of interest to those who write in assembly languages and to compiler writers. For a related concept see orthogonal instruction set which deals with the ability of any instruction to use any addressing mode. There are no generally accepted names for addressing modes: different authors and computer manufacturers may give different names to the same addressing mode, or the same names to different addressing modes. Furthermore, an addressing mode which, in one given architecture, is treated as a single addressing mode may represent functionality that, in another architecture, is covered by two or more addressing modes. For example, some complex instruction set computer (CISC) architectures, such as the Digital Equipment Corporation (DEC) VAX, treat registers and literal or immediate constants as just another addressing mode. Others, such as the IBM System/360 and its successors, and most reduced instruction set computer (RISC) designs, encode this information within the instruction. Thus, the latter machines have three distinct instruction codes for copying one register to another, copying a literal constant into a register, and copying the contents of a memory location into a register, while the VAX has only a single "MOV" instruction. The term "addressing mode" is itself subject to different interpretations: either "memory address calculation mode" or "operand accessing mode".
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
CS-208: Computer architecture I
The course introduces the students to the basic notions of computer architecture and, in particular, to the choices of the Instruction Set Architecture and to the memory hierarchy of modern systems.
CS-307: Introduction to multiprocessor architecture
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
MGT-555: Innovation & entrepreneurship in engineering
This course is a joint initiative between the School of Engineering and the College of Management to encourage and promote entrepreneurship and management skills, engineering design, hands-on experien
Show more
Related MOOCs (1)
The Radio Sky II: Observational Radio Astronomy
This course covers the principles and practices of radio astronomical observations, in particular with modern interferometers. Topics range from radio telescope technology to the measurement equation