In computability theory and computational complexity theory, a reduction is an algorithm for transforming one problem into another problem. A sufficiently efficient reduction from one problem to another may be used to show that the second problem is at least as difficult as the first.
Intuitively, problem A is reducible to problem B, if an algorithm for solving problem B efficiently (if it existed) could also be used as a subroutine to solve problem A efficiently. When this is true, solving A cannot be harder than solving B. "Harder" means having a higher estimate of the required computational resources in a given context (e.g., higher time complexity, greater memory requirement, expensive need for extra hardware processor cores for a parallel solution compared to a single-threaded solution, etc.). The existence of a reduction from A to B, can be written in the shorthand notation A ≤m B, usually with a subscript on the ≤ to indicate the type of reduction being used (m : mapping reduction, p : polynomial reduction).
The mathematical structure generated on a set of problems by the reductions of a particular type generally forms a preorder, whose equivalence classes may be used to define degrees of unsolvability and complexity classes.
There are two main situations where we need to use reductions:
First, we find ourselves trying to solve a problem that is similar to a problem we've already solved. In these cases, often a quick way of solving the new problem is to transform each instance of the new problem into instances of the old problem, solve these using our existing solution, and then use these to obtain our final solution. This is perhaps the most obvious use of reductions.
Second: suppose we have a problem that we've proven is hard to solve, and we have a similar new problem. We might suspect that it is also hard to solve. We argue by contradiction: suppose the new problem is easy to solve. Then, if we can show that every instance of the old problem can be solved easily by transforming it into instances of the new problem and solving those, we have a contradiction.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
La première partie du cours décrit les méthodes classiques de synthèse asymétrique. La seconde partie du cours traite des stratégies de rétrosynthèse basées sur l'approche par disconnection.
In computational complexity theory, a polynomial-time reduction is a method for solving one problem using another. One shows that if a hypothetical subroutine solving the second problem exists, then the first problem can be solved by transforming or reducing it to inputs for the second problem and calling the subroutine one or more times. If both the time required to transform the first problem to the second, and the number of times the subroutine is called is polynomial, then the first problem is polynomial-time reducible to the second.
In computational complexity theory, a problem is NP-complete when: It is a decision problem, meaning that for any input to the problem, the output is either "yes" or "no". When the answer is "yes", this can be demonstrated through the existence of a short (polynomial length) solution. The correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying all possible solutions.
In computational complexity theory, a decision problem is P-complete (complete for the complexity class P) if it is in P and every problem in P can be reduced to it by an appropriate reduction. The notion of P-complete decision problems is useful in the analysis of: which problems are difficult to parallelize effectively, which problems are difficult to solve in limited space. specifically when stronger notions of reducibility than polytime-reducibility are considered.
The recent geopolitical conflicts in Europe have underscored the vulnerability of the current energy system to the volatility of energy carrier prices. In the prospect of defining robust energy systems ensuring sustainable energy supply in the future, the ...
Pergamon-Elsevier Science Ltd2024
, ,
We present a cost-effective electro-optic frequency comb generation and equalization method using a single phase modulator inserted in a Sagnac interferometer layout. The equalization relies on the interference of comb lines generated in both clockwise and ...
Optica Publishing Group2023
, , , , , ,
The need for sustainable and reliable decontamination methods is driven by concerns regarding antibiotic resistance, as well as environmental and cost -efficiency challenges associated with traditional methods. Plasmaactivated water (PAW) holds significant ...