Concept

P-complete

Summary
In computational complexity theory, a decision problem is P-complete (complete for the complexity class P) if it is in P and every problem in P can be reduced to it by an appropriate reduction. The notion of P-complete decision problems is useful in the analysis of: which problems are difficult to parallelize effectively, which problems are difficult to solve in limited space. specifically when stronger notions of reducibility than polytime-reducibility are considered. The specific type of reduction used varies and may affect the exact set of problems. Generically, reductions stronger than polynomial-time reductions are used, since all languages in P (except the empty language and the language of all strings) are P-complete under polynomial-time reductions. If we use NC reductions, that is, reductions which can operate in polylogarithmic time on a parallel computer with a polynomial number of processors, then all P-complete problems lie outside NC and so cannot be effectively parallelized, under the unproven assumption that NC ≠ P. If we use the stronger log-space reduction, this remains true, but additionally we learn that all P-complete problems lie outside L under the weaker unproven assumption that L ≠ P. In this latter case the set P-complete may be smaller. The class P, typically taken to consist of all the "tractable" problems for a sequential computer, contains the class NC, which consists of those problems which can be efficiently solved on a parallel computer. This is because parallel computers can be simulated on a sequential machine. It is not known whether NC = P. In other words, it is not known whether there are any tractable problems that are inherently sequential. Just as it is widely suspected that P does not equal NP, so it is widely suspected that NC does not equal P. Similarly, the class L contains all problems that can be solved by a sequential computer in logarithmic space. Such machines run in polynomial time because they can have a polynomial number of configurations.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.