En calculabilité et en théorie de la complexité, une réduction est un algorithme transformant une instance d'un problème algorithmique en une ou plusieurs instances d'un autre problème. S'il existe une telle réduction d'un problème A à un problème B, on dit que le problème A se réduit au problème B. Dans ce cas, le problème B est plus difficile que le problème A, puisque l'on peut résoudre le problème A en appliquant la réduction puis un algorithme pour le problème B. On écrit alors A ≤ B.
Il y a deux utilisations des réductions.
Montrer qu'un problème est intrinsèquement difficile. Par exemple, on utilise une réduction pour montrer que des problèmes sont indécidables : on montre alors que le problème est tellement algorithmiquement difficile, qu'il n'y a pas d'algorithmique qui le décide. Les réductions polynomiales sont utilisées pour démontrer que des problèmes sont NP-difficiles. Plus généralement, on démontre avec des réductions qu'un problème est parmi les plus difficiles d'une classe de complexité.
Montrer qu'un problème est facile à résoudre algorithmiquement. Par exemple, si A ≤ B avec ≤ une réduction en temps polynomial, et que B appartenant à P, alors A est aussi dans P.
Considérons deux problèmes : le problème M de la multiplication de deux entiers, et le problème C de l'élévation au carré d'un entier. Le problème C est plus facile que le problème M. En effet, si l'on sait faire une multiplication, on peut élever un nombre au carré en le multipliant par lui-même, donc C ≤ M. La réduction de C dans M est : on transforme un entier à élever au carré en la donnée de deux entiers égaux (x, x) à multiplier.
De manière intéressante, on peut aussi démontrer que M se réduit à C (M ≤ C). En effet, grâce à la formule :
on voit que l'on peut calculer le produit de a et b, en calculant trois élévations au carré. Ainsi, les deux problèmes sont aussi difficiles l'un que l'autre (ils peuvent être réduits l'un à l'autre).
Les définitions qui suivent mettent en jeu des entiers car les instances des problèmes sont codées dans N.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
La première partie du cours décrit les méthodes classiques de synthèse asymétrique. La seconde partie du cours traite des stratégies de rétrosynthèse basées sur l'approche par disconnection.
Une réduction polynomiale est un outil d'informatique théorique, plus particulièrement de théorie de la complexité. C'est une classe particulière de réductions particulièrement importante, notamment pour le problème P = NP. Dans le cadre des langages formels pour les problèmes de décision, on dit qu'un langage est réductible en temps polynomial à un langage (noté ) s'il existe une fonction calculable en temps polynomial telle que pour tout , si et seulement si .
En théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
En théorie de la complexité computationnelle, un problème de décision est P-complet (c.-à-d. complet pour la classe de complexité P des problèmes en temps polynomial) s'il est dans P et tout problème dans P peut y être réduit par une réduction en espace logarithmique (d'autres réductions sont aussi utilisées, comme NC). La notion de problème de décision P-complet est utile pour déterminer : quels problèmes sont difficiles à paralléliser efficacement (si on utilise des réductions NC), quels problèmes sont difficiles à résoudre dans un espace limité (si on utilise des réductions en espace logarithmique).
Explore les caractéristiques et la manipulation des réseaux dynamiques (vecteurs), en mettant l'accent sur les techniques efficaces et les compromis impliqués.
Explore l'exactitude de l'algorithme, l'analyse de la complexité dans le pire des cas et la comparaison de l'efficacité en fonction de la taille des entrées.
The need for sustainable and reliable decontamination methods is driven by concerns regarding antibiotic resistance, as well as environmental and cost -efficiency challenges associated with traditional methods. Plasmaactivated water (PAW) holds significant ...
Elsevier Science Sa2024
, ,
The recent geopolitical conflicts in Europe have underscored the vulnerability of the current energy system to the volatility of energy carrier prices. In the prospect of defining robust energy systems ensuring sustainable energy supply in the future, the ...
Pergamon-Elsevier Science Ltd2024
, ,
We present a cost-effective electro-optic frequency comb generation and equalization method using a single phase modulator inserted in a Sagnac interferometer layout. The equalization relies on the interference of comb lines generated in both clockwise and ...