Concept

Disjunction elimination

In propositional logic, disjunction elimination (sometimes named proof by cases, case analysis, or or elimination), is the valid argument form and rule of inference that allows one to eliminate a disjunctive statement from a logical proof. It is the inference that if a statement implies a statement and a statement also implies , then if either or is true, then has to be true. The reasoning is simple: since at least one of the statements P and R is true, and since either of them would be sufficient to entail Q, Q is certainly true. An example in English: If I'm inside, I have my wallet on me. If I'm outside, I have my wallet on me. It is true that either I'm inside or I'm outside. Therefore, I have my wallet on me. It is the rule can be stated as: where the rule is that whenever instances of "", and "" and "" appear on lines of a proof, "" can be placed on a subsequent line. The disjunction elimination rule may be written in sequent notation: where is a metalogical symbol meaning that is a syntactic consequence of , and and in some logical system; and expressed as a truth-functional tautology or theorem of propositional logic: where , , and are propositions expressed in some formal system.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.