Summary
In machine learning, boosting is an ensemble meta-algorithm for primarily reducing bias, and also variance in supervised learning, and a family of machine learning algorithms that convert weak learners to strong ones. Boosting is based on the question posed by Kearns and Valiant (1988, 1989): "Can a set of weak learners create a single strong learner?" A weak learner is defined to be a classifier that is only slightly correlated with the true classification (it can label examples better than random guessing). In contrast, a strong learner is a classifier that is arbitrarily well-correlated with the true classification. Robert Schapire's affirmative answer in a 1990 paper to the question of Kearns and Valiant has had significant ramifications in machine learning and statistics, most notably leading to the development of boosting. When first introduced, the hypothesis boosting problem simply referred to the process of turning a weak learner into a strong learner. "Informally, [the hypothesis boosting] problem asks whether an efficient learning algorithm [...] that outputs a hypothesis whose performance is only slightly better than random guessing [i.e. a weak learner] implies the existence of an efficient algorithm that outputs a hypothesis of arbitrary accuracy [i.e. a strong learner]." Algorithms that achieve hypothesis boosting quickly became simply known as "boosting". Freund and Schapire's arcing (Adapt[at]ive Resampling and Combining), as a general technique, is more or less synonymous with boosting. While boosting is not algorithmically constrained, most boosting algorithms consist of iteratively learning weak classifiers with respect to a distribution and adding them to a final strong classifier. When they are added, they are weighted in a way that is related to the weak learners' accuracy. After a weak learner is added, the data weights are readjusted, known as "re-weighting". Misclassified input data gain a higher weight and examples that are classified correctly lose weight.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.