A shallow foundation is a type of building foundation that transfers structural load to the earth very near to the surface, rather than to a subsurface layer or a range of depths, as does a deep foundation. Customarily, a shallow foundation is considered as such when the width of the entire foundation is greater than its depth. In comparison to deep foundations, shallow foundations are less technical, thus making them more economical and the most widely used for relatively light structures.
Footings are always wider than the members that they support. Structural loads from a column or wall are usually greater than 1000kPa, while the soil's bearing capacity is commonly less than that (typically less than 400kPa). By possessing a larger bearing area, the foundation distributes the pressure to the soil, decreasing the bearing pressure to within allowable values. A structure is not limited to one footing. Multiple types of footings may be used in a construction project.
Wall footing
Also called strip footing, this footing is a continuous strip that supports structural and non-structural load bearing walls. Found directly under the wall, Its width is commonly 2-3 times wider than the wall above it.
Also called single-column footing, it is a square, rectangular, or circular slab that supports the structural members individually. Generally, each of its columns gets its footing to transmit and distribute the load of the structure towards the soil underneath. Sometimes, an isolated footing can be sloped or stepped at the base to spread greater loads. This type of footing is used when the structural load is relatively low, columns are widely spaced, and the soil's bearing capacity is adequate at a shallow depth.
When more than one column shares the same footing, these are called combined footing. Utilized when the spacing of the columns is too restricted, that if isolated footing were used, they would overlap one another. Also, when property lines make isolated footings eccentrically loaded, combined footings are preferred.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les étudiants connaissent les techniques de calculs et de réalisation des fondation d'ouvrages et de soutènement des en terrain meuble.
Ils savent
déterminer les facteurs influençant un projet géot
The course deals with the design of precast reinforced concrete structures, both for bridges and for buildings.
The course is focused in learning by projects supplemented by some lectures by the teac
Ce cours traite les principaux aspects de la conception et du dimensionnement des ponts en béton armé et précontraint. L'accent est mis sur les ponts poutres. Etude des aspects suivants : optimisation
A concrete slab is a common structural element of modern buildings, consisting of a flat, horizontal surface made of cast concrete. Steel-reinforced slabs, typically between 100 and 500 mm thick, are most often used to construct floors and ceilings, while thinner mud slabs may be used for exterior paving . In many domestic and industrial buildings, a thick concrete slab supported on foundations or directly on the subsoil, is used to construct the ground floor. These slabs are generally classified as ground-bearing or suspended.
Prestressed concrete is a form of concrete used in construction. It is substantially "prestressed" (compressed) during production, in a manner that strengthens it against tensile forces which will exist when in service. This compression is produced by the tensioning of high-strength "tendons" located within or adjacent to the concrete and is done to improve the performance of the concrete in service. Tendons may consist of single wires, multi-wire strands or threaded bars that are most commonly made from high-tensile steels, carbon fiber or aramid fiber.
Structural engineering is a sub-discipline of civil engineering in which structural engineers are trained to design the 'bones and muscles' that create the form and shape of human-made structures. Structural engineers also must understand and calculate the stability, strength, rigidity and earthquake-susceptibility of built structures for buildings and nonbuilding structures. The structural designs are integrated with those of other designers such as architects and building services engineer and often supervise the construction of projects by contractors on site.
In typical reinforced concrete design, reinforcement is designed to carry axial forces, but it can also resist transversal forces by dowel action. This is usually neglected for simplicity's sake in the design phase, but it can be accounted for either expli ...
Codes of practice can be overly conservative, particularly for the shear resistance of reinforced concrete beams with shear reinforcement when large loads act close to supports. This thesis addresses the topic by proposing a refined design approach based o ...
Practices that reuse concrete pieces in new building or infrastructure projects are currently diversifying as concrete reuse gains more and more relevance for sustainability. The present research provides a yet missing identification of the main approaches ...