Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Geomagnetically induced currents (GIC) are electrical currents induced at the Earth's surface by rapid changes in the geomagnetic field caused by space weather events. GICs can affect the normal operation of long electrical conductor systems such as electric transmission grids and buried pipelines. The geomagnetic disturbances which induce GICs include geomagnetic storms and substorms where the most severe disturbances occur at high geomagnetic latitudes. The Earth's magnetic field varies over a wide range of timescales. The longer-term variations, typically occurring over decades to millennia, are predominantly the result of dynamo action in the Earth's core. Geomagnetic variations on timescales of seconds to years also occur, due to dynamic processes in the ionosphere, magnetosphere and heliosphere. These changes are ultimately tied to variations associated with the solar activity (or sunspot) cycle and are manifestations of space weather. The fact that the geomagnetic field does respond to solar conditions can be useful, for example, in investigating Earth structure using magnetotellurics, but it also creates a hazard. This geomagnetic hazard is primarily a risk to technology under the Earth's protective atmospheric blanket. A time-varying magnetic field external to the Earth induces telluric currents—electric currents in the conducting ground. These currents create a secondary (internal) magnetic field. As a consequence of Faraday's law of induction, an electric field at the surface of the Earth is induced associated with time variations of the magnetic field. The surface electric field causes electrical currents, known as geomagnetically induced currents (GIC), to flow in any conducting structure, for example, a power or pipeline grid grounded in the Earth. This electric field, measured in V/km, acts as a voltage source across networks. Examples of conducting networks are electrical power transmission grids, oil and gas pipelines, non-fiber optic undersea communication cables, non-fiber optic telephone and telegraph networks and railways.
Marcos Rubinstein, Dongshuai Li