Concept

Carrington Event

The Carrington Event was the most intense geomagnetic storm in recorded history, peaking from 1 to 2 September 1859 during solar cycle 10. It created strong auroral displays that were reported globally and caused sparking and even fires in multiple telegraph stations. The geomagnetic storm was most likely the result of a coronal mass ejection (CME) from the Sun colliding with Earth's magnetosphere. The geomagnetic storm was associated with a very bright solar flare on 1 September 1859. It was observed and recorded independently by British astronomers Richard Christopher Carrington and Richard Hodgson—the first records of a solar flare. A geomagnetic storm of this magnitude occurring today would cause widespread electrical disruptions, blackouts, and damage due to extended outages of the electrical power grid. On 1–2 September 1859, one of the largest geomagnetic storms (as recorded by ground-based magnetometers) occurred. Estimates of the storm strength (Dst) range from −0.80 to −1.75 μT. The geomagnetic storm is thought to have been initiated by a major CME that traveled directly toward Earth, taking 17.6 hours to make the journey. Typical CMEs take several days to arrive at Earth, but it is believed that the relatively high speed of this CME was made possible by a prior CME, perhaps the cause of the large aurora event on 29 August that "cleared the way" of ambient solar wind plasma for the Carrington Event. Just before noon on 1 September, the English amateur astronomers Richard Christopher Carrington and Richard Hodgson independently recorded the earliest observations of a solar flare. Carrington and Hodgson compiled independent reports which were published side by side in Monthly Notices of the Royal Astronomical Society and exhibited their drawings of the event at the November 1859 meeting of the Royal Astronomical Society. Because of a geomagnetic solar flare effect (a "magnetic crochet") observed in the Kew Observatory magnetometer record by Scottish physicist Balfour Stewart, and a geomagnetic storm observed the following day, Carrington suspected a solar-terrestrial connection.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (15)
GNSS Interference Analysis: Impact on Positioning Accuracy
Explores the impact of extreme solar events on GPS positioning accuracy, revealing errors and vulnerabilities during geomagnetic storms and sun flares.
Harvest: Samples Collection
Explores the collection of samples from diverse landscapes, forest layers, soil horizons, and the impact of solar storms on Earth's magnetosphere.
Space Environmental Constraints: Radiations, Vibrations, Shocks
Explores space environmental constraints, including radiations, vibrations, shocks, and their impact on spacecraft mechanisms and human-induced vibrations.
Show more
Related publications (32)
Related concepts (16)
March 1989 geomagnetic storm
The March 1989 geomagnetic storm occurred as part of severe to extreme solar storms during early to mid March 1989, the most notable being a geomagnetic storm that struck Earth on March 13. This geomagnetic storm caused a nine-hour outage of Hydro-Québec's electricity transmission system. The onset time was exceptionally rapid. Other historically significant solar storms occurred later in 1989, during a very active period of solar cycle 22.
Electromagnetic pulse
An electromagnetic pulse (EMP), also referred to as a transient electromagnetic disturbance (TED), is a brief burst of electromagnetic energy. The origin of an EMP can be natural or artificial, and can occur as an electromagnetic field, as an electric field, as a magnetic field, or as a conducted electric current. The electromagnetic interference caused by an EMP can disrupt communications and damage electronic equipment. An EMP such as a lightning strike can physically damage objects such as buildings and aircraft.
K-index
The K-index quantifies disturbances in the horizontal component of Earth's magnetic field with an integer in the range 0–9 with 1 being calm and 5 or more indicating a geomagnetic storm. It is derived from the maximum fluctuations of horizontal components observed on a magnetometer during a three-hour interval. The label K comes from the German word Kennziffer meaning "characteristic digit". The K-index was introduced by Julius Bartels in 1939. The K-scale is quasi-logarithmic.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.