In commutative algebra, an element b of a commutative ring B is said to be integral over A, a subring of B, if there are n ≥ 1 and aj in A such that
That is to say, b is a root of a monic polynomial over A. The set of elements of B that are integral over A is called the integral closure of A in B. It is a subring of B containing A. If every element of B is integral over A, then we say that B is integral over A, or equivalently B is an integral extension of A.
If A, B are fields, then the notions of "integral over" and of an "integral extension" are precisely "algebraic over" and "algebraic extensions" in field theory (since the root of any polynomial is the root of a monic polynomial).
The case of greatest interest in number theory is that of complex numbers integral over Z (e.g., or ); in this context, the integral elements are usually called algebraic integers. The algebraic integers in a finite extension field k of the rationals Q form a subring of k, called the ring of integers of k, a central object of study in algebraic number theory.
In this article, the term ring will be understood to mean commutative ring with a multiplicative identity.
There are many examples of integral closure which can be found in algebraic number theory since it is fundamental for defining the ring of integers for an algebraic field extension (or ).
Integers are the only elements of Q that are integral over Z. In other words, Z is the integral closure of Z in Q.
The Gaussian integers are the complex numbers of the form , and are integral over Z. is then the integral closure of Z in . Typically this ring is denoted .
The integral closure of Z in is the ring
This example and the previous one are examples of quadratic integers. The integral closure of a quadratic extension can be found by constructing the minimal polynomial of an arbitrary element and finding number-theoretic criterion for the polynomial to have integral coefficients. This analysis can be found in the quadratic extensions article.
Let ζ be a root of unity.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
C'est un cours introductoire dans la théorie d'anneau et de corps.
In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring (typically a commutative ring) and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field.
In commutative algebra, a branch of mathematics, going up and going down are terms which refer to certain properties of chains of prime ideals in integral extensions. The phrase going up refers to the case when a chain can be extended by "upward inclusion", while going down refers to the case when a chain can be extended by "downward inclusion". The major results are the Cohen–Seidenberg theorems, which were proved by Irvin S. Cohen and Abraham Seidenberg. These are known as the going-up and going-down theorems.
In mathematics, the Noether normalization lemma is a result of commutative algebra, introduced by Emmy Noether in 1926. It states that for any field k, and any finitely generated commutative k-algebra A, there exist algebraically independent elements y1, y2, ..., yd in A such that A is a finitely generated module over the polynomial ring S = k [y1, y2, ..., yd]. The integer d is equal to the Krull dimension of the ring A; and if A is an integral domain, d is also the transcendence degree of the field of fractions of A over k.
We present DARKFLUX, a software tool designed to analyze indirect-detection signatures for next-generation models of dark matter (DM) with multiple annihilation channels. Version 1.0 of this tool accepts user-generated models with 2 -> 2 tree-level dark ma ...
The development of small-angle scattering tensor tomography has enabled the study of anisotropic nanostructures in a volume-resolved manner. It is of great value to have reconstruction methods that can handle many different nanostructural symmetries. For s ...
It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension