In model theory, a branch of mathematical logic, two structures M and N of the same signature σ are called elementarily equivalent if they satisfy the same first-order σ-sentences.
If N is a substructure of M, one often needs a stronger condition. In this case N is called an elementary substructure of M if every first-order σ-formula φ(a1, ..., an) with parameters a1, ..., an from N is true in N if and only if it is true in M.
If N is an elementary substructure of M, then M is called an elementary extension of N. An embedding h: N → M is called an elementary embedding of N into M if h(N) is an elementary substructure of M.
A substructure N of M is elementary if and only if it passes the Tarski–Vaught test: every first-order formula φ(x, b1, ..., bn) with parameters in N that has a solution in M also has a solution in N when evaluated in M. One can prove that two structures are elementarily equivalent with the Ehrenfeucht–Fraïssé games.
Elementary embeddings are used in the study of large cardinals, including rank-into-rank.
Two structures M and N of the same signature σ are elementarily equivalent if every first-order sentence (formula without free variables) over σ is true in M if and only if it is true in N, i.e. if M and N have the same complete first-order theory.
If M and N are elementarily equivalent, one writes M ≡ N.
A first-order theory is complete if and only if any two of its models are elementarily equivalent.
For example, consider the language with one binary relation symbol '
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. A real closed field is a field F in which any of the following equivalent conditions is true: F is elementarily equivalent to the real numbers. In other words, it has the same first-order properties as the reals: any sentence in the first-order language of fields is true in F if and only if it is true in the reals.
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
In model theory, a discipline within mathematical logic, a non-standard model is a model of a theory that is not isomorphic to the intended model (or standard model). If the intended model is infinite and the language is first-order, then the Löwenheim–Skolem theorems guarantee the existence of non-standard models. The non-standard models can be chosen as elementary extensions or elementary substructures of the intended model. Non-standard models are studied in set theory, non-standard analysis and non-standard models of arithmetic.
Linking facts across documents is a challenging task, as the language used to express the same information in a sentence can vary significantly, which complicates the task of multi-document summarization. Consequently, existing approaches heavily rely on h ...