Concept

Tomographic reconstruction

Tomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis for tomographic imaging was laid down by Johann Radon. A notable example of applications is the reconstruction of computed tomography (CT) where cross-sectional images of patients are obtained in non-invasive manner. Recent developments have seen the Radon transform and its inverse used for tasks related to realistic object insertion required for testing and evaluating computed tomography use in airport security. This article applies in general to reconstruction methods for all kinds of tomography, but some of the terms and physical descriptions refer directly to the reconstruction of X-ray computed tomography. The projection of an object, resulting from the tomographic measurement process at a given angle , is made up of a set of line integrals (see Fig. 1). A set of many such projections under different angles organized in 2D is called sinogram (see Fig. 3). In X-ray CT, the line integral represents the total attenuation of the beam of x-rays as it travels in a straight line through the object. As mentioned above, the resulting image is a 2D (or 3D) model of the attenuation coefficient. That is, we wish to find the image . The simplest and easiest way to visualise the method of scanning is the system of parallel projection, as used in the first scanners. For this discussion we consider the data to be collected as a series of parallel rays, at position , across a projection at angle . This is repeated for various angles. Attenuation occurs exponentially in tissue: where is the attenuation coefficient as a function of position. Therefore, generally the total attenuation of a ray at position , on the projection at angle , is given by the line integral: Using the coordinate system of Figure 1, the value of onto which the point will be projected at angle is given by: So the equation above can be rewritten as where represents and is the Dirac delta function.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
MICRO-512: Image processing II
Study of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in Jupyter Notebooks; application to real-world examples in industrial vision and bio
MICRO-413: Advanced additive manufacturing technologies
Advanced 3D forming techniques for high throughput and high resolution (nanometric) for large scale production. Digital manufacturing of functional layers, microsystems and smart systems.
PHYS-405: Experimental methods in physics
The course's objectivs are: Learning several advenced methods in experimental physics, and critical reading of experimental papers.
Afficher plus
Séances de cours associées (49)
Chambres d'Amis : Reconstruire des espaces privés dans les musées
Explore la reconstruction des espaces privés dans les musées pour engager le public avec l'art.
Fourier Transform Applications: Bases de traitement d'images
Couvre les bases du traitement d'image, la transformation de Fourier, la convolution, la corrélation croisée et la reconstruction 3D à l'aide du théorème de projection Radon.
Image Processing II: Techniques de rétroprojection et de reconstruction
Explore la rétroprojection, les techniques de reconstruction, le théorème de Fourier Slice, la rétroprojection filtrée et les méthodes algébriques dans le traitement d'images.
Afficher plus
Publications associées (440)

Towards Trustworthy Deep Learning for Image Reconstruction

Alexis Marie Frederic Goujon

The remarkable ability of deep learning (DL) models to approximate high-dimensional functions from samples has sparked a revolution across numerous scientific and industrial domains that cannot be overemphasized. In sensitive applications, the good perform ...
EPFL2024

TSLAM: a tag-based object-centered monocular navigation system for augmented manual woodworking.

Hong-Bin Yang

TimberSLAM (TSLAM) is an object-centered, tag-based visual self-localization and mapping (SLAM) system for monocular RGB cameras. It was specifically developed to support a robust and augmented reality pipeline for close-range, noisy, and cluttered fabrica ...
2024

Correlating cryo-super resolution radial fluctuations and dual-axis cryo-scanning transmission electron tomography to bridge the light-electron resolution gap

Prabhu Prasad Swain

Visualization of organelles and their interactions with other features in the native cell remains a challenge in modern biology. We have introduced cryo-scanning transmission electron tomography (CSTET), which can ac-cess 3D volumes on the scale of 1 micro ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2023
Afficher plus
Concepts associés (4)
Iterative reconstruction
Iterative reconstruction refers to iterative algorithms used to reconstruct 2D and 3D images in certain imaging techniques. For example, in computed tomography an image must be reconstructed from projections of an object. Here, iterative reconstruction techniques are usually a better, but computationally more expensive alternative to the common filtered back projection (FBP) method, which directly calculates the image in a single reconstruction step.
Théorème de Radon
Le théorème de projection de Radon établit la possibilité de reconstituer une fonction réelle à deux variables (assimilable à une image) à l'aide de la totalité de ses projections selon des droites concourantes. L'application la plus courante de ce théorème est la reconstruction d'images médicales en tomodensitométrie, c'est-à-dire dans les scanneurs à rayon X. Il doit son nom au mathématicien Johann Radon. En pratique, il est impossible de disposer de toutes les projections d'un objet solide, seulement un échantillonnage.
Tomographie
vignette|Principe de base de la tomographie par projections : les coupes tomographiques transversales S1 et S2 sont superposées et comparées à l’image projetée P. La tomographie est une technique d’, très utilisée dans l’, ainsi qu’en géophysique, en astrophysique et en mécanique des matériaux. Cette technique permet de reconstruire le volume d’un objet à partir d’une série de mesures effectuées depuis l’extérieur de cet objet.
Afficher plus
MOOCs associés (9)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.