Concept

Tomography

Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. In many cases, the production of these images is based on the mathematical procedure tomographic reconstruction, such as X-ray computed tomography technically being produced from multiple projectional radiographs. Many different reconstruction algorithms exist. Most algorithms fall into one of two categories: filtered back projection (FBP) and iterative reconstruction (IR). These procedures give inexact results: they represent a compromise between accuracy and computation time required. FBP demands fewer computational resources, while IR generally produces fewer artifacts (errors in the reconstruction) at a higher computing cost. Although MRI (magnetic resonance imaging), Optical coherence tomography and ultrasound are transmission methods, they typically do not require movement of the transmitter to acquire data from different directions. In MRI, both projections and higher spatial harmonics are sampled by applying spatially-varying magnetic fields; no moving parts are necessary to generate an image. On the other hand, since ultrasound and optical coherence tomography uses time-of-flight to spatially encode the received signal, it is not strictly a tomographic method and does not require multiple image acquisitions. Some recent advances rely on using simultaneously integrated physical phenomena, e.g. X-rays for both CT and angiography, combined CT/MRI and combined CT/PET. Discrete tomography and Geometric tomography, on the other hand, are research areas that deal with the reconstruction of objects that are discrete (such as crystals) or homogeneous.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (10)
ENV-617: Snow Science Winter School (WSL)
The modern techniques and methods to measure snow properties in the field and in the laboratory are introduced by specialists in the corresponding field. The methods are applied in the field and in th
MICRO-562: Biomicroscopy II
Introduction to the different contrast enhancing methods in optical microscopy. Basic hands-on experience with optical microscopes at EPFL's BioImaging and Optics Facility. How to investigate biologic
MSE-704: 3D Electron Microscopy and FIB-Nanotomography
The principles of 3D surface (SEM) reconstruction and its limitations will be explained. 3D volume reconstruction and tomography methods by electron microscopy (SEM/FIB and TEM) will be explained and
Show more
Related lectures (49)
Tomography: Imaging and Applications
Explores principles and applications of tomography, including 3D microscopy techniques and atomic-level material reconstruction.
Electron Tomography
Explores 3D Microscopy and Tomography techniques, including Atom Probe Tomography and Field Emission Microscopy, emphasizing electron tomography principles and applications.
X-ray Tomography Practical Analysis
Covers the practical analysis of X-ray tomography images using Fiji software.
Show more
Related publications (284)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.