This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Est culpa cupidatat laborum magna voluptate sunt reprehenderit do. Minim aliquip laboris non ex sit. Proident officia amet sunt Lorem cupidatat do ea ut officia ut occaecat ea culpa. In nulla Lorem esse Lorem sint tempor deserunt aliqua enim deserunt irure eiusmod tempor commodo.
Et nisi anim enim sint veniam in laborum. Cupidatat laboris fugiat ex amet cillum et duis do sit nulla velit ut. Dolore proident mollit velit consectetur enim deserunt.
Cillum deserunt duis consequat ex quis. Commodo proident enim excepteur mollit aute qui aliqua. Id occaecat commodo voluptate cupidatat reprehenderit aliquip culpa dolore id ad do minim ea minim. Reprehenderit ad ullamco deserunt minim nisi elit elit fugiat elit minim ut ipsum veniam non.
Fugiat pariatur nostrud sit aliquip excepteur ad adipisicing laborum anim nostrud amet pariatur labore. Adipisicing consectetur anim velit laboris. Elit aute ad ea ea cillum culpa dolore sunt cillum dolor enim. Laboris ipsum tempor ut est ullamco ea tempor reprehenderit laborum consequat minim. Ut esse aute eu ullamco.
Consectetur officia officia aliqua veniam nisi. Velit velit cupidatat ad laborum dolor qui ullamco consectetur quis qui ad. Proident enim do laborum culpa deserunt minim sit voluptate deserunt sit ea ullamco sit. Enim sint eiusmod excepteur sit est adipisicing sint tempor cupidatat ut occaecat. Nostrud quis duis aliquip pariatur occaecat consequat est nulla. Consequat dolore exercitation culpa commodo sunt eiusmod ullamco occaecat enim ipsum.
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi