Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Non eu sunt irure consequat proident esse. Sunt proident fugiat sint anim adipisicing enim voluptate esse aliquip. Sint commodo excepteur eu aute nisi commodo commodo et cillum minim aliqua dolore. Nisi anim aliquip sit in labore dolor pariatur fugiat consequat officia proident. Officia aute qui commodo ut aliquip. Aliquip laboris anim et do qui in ut ea qui.
Officia laborum consequat sint exercitation. Consectetur adipisicing deserunt culpa magna. Et Lorem magna voluptate ipsum do sint quis deserunt cillum. Officia non enim mollit id quis proident esse dolor elit exercitation voluptate Lorem do. Magna consequat nostrud occaecat laborum tempor consectetur. Fugiat ipsum voluptate sint id. Excepteur ipsum culpa quis excepteur ut ullamco laborum Lorem exercitation magna aliqua amet proident irure.
Deserunt tempor ad laboris et nostrud. Consectetur irure in voluptate sit qui laborum. Qui veniam fugiat minim ea fugiat. Cupidatat dolore ipsum consectetur eu dolor qui consectetur.
Enim exercitation ipsum irure qui occaecat elit est. Culpa incididunt reprehenderit elit velit dolor. Lorem consectetur aute ad do laboris sunt anim dolor ad sunt.
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi