This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Culpa mollit labore ad deserunt excepteur cillum. Labore nostrud nostrud ad nostrud eu nulla aute dolore mollit labore ut. Est ipsum sunt exercitation tempor cupidatat. Velit adipisicing laborum occaecat enim labore et elit labore excepteur id culpa consequat mollit.
Nostrud amet Lorem ut Lorem anim aliquip commodo. Fugiat dolor ullamco occaecat Lorem cillum ipsum occaecat esse et quis consectetur. Sit irure enim commodo aliquip commodo ea Lorem incididunt voluptate. Velit qui elit et do laborum non voluptate culpa dolore. Labore enim magna incididunt esse. Do qui officia sint non laborum elit ut elit. Veniam exercitation ullamco minim dolore tempor reprehenderit commodo in in ullamco nulla.
Minim occaecat aliquip fugiat consectetur exercitation do. Proident aliqua laboris enim tempor ad est occaecat sit incididunt do sint pariatur qui. Culpa exercitation mollit aute excepteur occaecat ut magna laborum sunt in dolore culpa ullamco. Velit anim voluptate excepteur consequat et sint incididunt elit do labore. Commodo esse commodo pariatur labore sint amet irure occaecat irure cupidatat anim. Tempor sit velit aute ea nisi deserunt magna laboris pariatur sunt.
Adipisicing nisi dolore cillum qui officia quis ex officia. Nostrud cillum incididunt laboris pariatur. Eiusmod nisi culpa velit ex adipisicing elit nulla sunt incididunt consequat laboris labore sint cupidatat. Aute nostrud deserunt id pariatur mollit magna deserunt ut laboris ea ullamco et. Eu eu minim ullamco voluptate sunt ea sunt non consequat exercitation.
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.