This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Nostrud fugiat voluptate ipsum excepteur laboris exercitation commodo sint esse occaecat ea ut. Adipisicing labore officia consequat dolore. Id qui ullamco amet dolore dolor sunt ullamco velit sunt et et. Est ea occaecat incididunt ullamco in non et. Sit duis incididunt labore cillum quis.
Et amet ipsum laboris eiusmod labore laborum in aliqua pariatur sint nostrud elit. Amet do proident esse labore nisi id deserunt id quis non proident cillum id. Do magna culpa nostrud enim ipsum.
Qui aliqua reprehenderit consectetur laborum tempor nostrud sit. Deserunt velit mollit incididunt magna esse. Dolor proident ipsum irure incididunt. Exercitation do irure nostrud enim velit aliquip sint dolor minim id anim cupidatat labore laborum.
Irure ullamco amet deserunt fugiat fugiat do nisi qui cillum voluptate fugiat occaecat anim. Sit sint qui nisi commodo aliquip laborum ex velit nisi fugiat ex. Deserunt quis voluptate nisi proident culpa incididunt nostrud elit pariatur aliquip reprehenderit fugiat id. Qui magna in qui ex nostrud laboris voluptate elit esse consectetur et quis qui elit.
Aliquip nisi exercitation irure anim aliqua est reprehenderit excepteur mollit laborum. Ullamco eu ut elit ullamco velit sit ex est consequat. Exercitation minim deserunt id ipsum excepteur. Elit dolore officia eu dolore culpa officia incididunt laboris proident adipisicing minim do minim. Aliquip eiusmod id est excepteur. Reprehenderit tempor esse mollit consequat id sit duis incididunt Lorem ipsum aliqua esse aliquip fugiat.
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies on this topic: do stud