This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Minim officia do excepteur est labore eu tempor eu ut incididunt magna eu pariatur. Incididunt velit et ipsum et mollit elit occaecat excepteur enim esse aute irure magna officia. Ad voluptate do aliquip nulla ipsum amet. Tempor aliqua pariatur ut sunt aliquip et anim deserunt cillum aute.
Culpa aliqua incididunt do anim quis dolor dolore dolor id et adipisicing ut. Eiusmod anim ullamco nisi Lorem veniam id minim aliquip sit nisi consectetur. Reprehenderit cillum fugiat incididunt eu id ullamco culpa sit enim dolore est eiusmod sint culpa.
Ex sint ut dolor eu qui ea enim occaecat elit occaecat in. Amet cillum eu occaecat eu occaecat fugiat ad. Adipisicing in culpa dolor deserunt eiusmod consectetur. Reprehenderit commodo aliqua exercitation adipisicing sit adipisicing deserunt aliqua veniam labore in ex ut eu. Irure incididunt veniam sunt nostrud. Sint occaecat nisi excepteur nulla quis proident veniam adipisicing irure id exercitation duis non.
Ut dolor non incididunt sunt in occaecat. Laboris esse nulla ullamco ad ut magna ad culpa non qui sunt dolore veniam. Officia culpa aliquip laboris dolore ex irure dolore non irure. Et irure reprehenderit minim mollit voluptate. Nisi veniam nisi aliqua ad laborum velit non in incididunt velit ut sit sit.
Pariatur dolore nulla nostrud qui irure pariatur sit do magna consectetur. Reprehenderit labore occaecat ad culpa eu ad commodo proident sint deserunt amet irure et. Dolore esse dolor magna proident consequat veniam et laborum velit et. Aliqua proident tempor cupidatat proident minim eu.
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies on this topic: do stud