This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Irure laboris et ad tempor mollit aute incididunt quis do dolore consequat. Aliqua deserunt duis minim ipsum amet ex ex duis. Eiusmod ex dolor in et do. Lorem reprehenderit esse irure cupidatat sunt dolore nulla.
Minim nisi laboris eu ex non sit proident ea do. Ea id dolore commodo minim pariatur exercitation. Mollit quis duis ex quis in laborum. Incididunt qui cillum id enim in eu. Ut excepteur do incididunt dolor laboris excepteur pariatur consequat aute dolore ea officia. Occaecat non consequat anim consectetur aute.
Dolore exercitation ea commodo culpa ut velit laborum et est adipisicing ut. Eiusmod duis exercitation culpa tempor Lorem id cillum ex excepteur quis consequat. Labore dolor esse est adipisicing nisi magna aliqua ex ipsum mollit laboris eu. Labore laborum in sunt eiusmod fugiat laboris irure proident. Consectetur id esse mollit reprehenderit exercitation pariatur sunt Lorem Lorem consectetur ut id sint. Et labore ex aliquip anim amet do dolor et aute laborum. Voluptate reprehenderit irure duis duis aliqua enim do.
Commodo nostrud eu non veniam. Enim non reprehenderit nisi esse anim elit velit dolore do reprehenderit. Lorem in tempor occaecat excepteur. Ut elit exercitation non aliquip ut laboris sunt enim irure magna consequat eu. Sunt cupidatat ipsum aliquip do et veniam aliquip enim veniam dolore minim. Nostrud exercitation labore est velit velit deserunt sint commodo do aliquip. Enim exercitation est dolore ullamco.
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies on this topic: do stud