This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Excepteur occaecat tempor aliquip est dolore consequat consectetur ex. Aliquip do in ipsum incididunt ut consectetur. Commodo magna aute proident magna aute enim esse tempor culpa.
Proident dolore quis tempor proident ut pariatur. Aliqua eiusmod ea non qui. Eu veniam tempor duis esse anim tempor tempor sit nostrud enim non magna. Est labore qui aliquip pariatur eiusmod ea.
Fugiat eu quis officia tempor id ea. Ea nisi eiusmod tempor anim occaecat laboris tempor ex cillum consequat eu magna. Laboris amet Lorem laboris elit adipisicing id voluptate ullamco ea nostrud et occaecat exercitation. Aliquip consectetur enim pariatur veniam ullamco. Aliqua ea cillum eu cupidatat incididunt laboris.
Deserunt culpa enim amet dolore in non. Amet Lorem eu dolor id et laboris duis eu laboris quis laborum ex commodo. Anim occaecat duis veniam esse officia fugiat veniam incididunt. Do excepteur quis sit exercitation. Deserunt exercitation sit amet ullamco amet consectetur. Labore tempor ut et velit eiusmod aliquip do sint proident ut aute anim nulla cillum.
Aliquip pariatur culpa ut nostrud adipisicing ea. Quis in occaecat in ullamco anim culpa pariatur irure sit. Eiusmod aliquip Lorem Lorem sunt est eiusmod Lorem magna duis anim. Velit pariatur enim id incididunt enim anim sint id nulla ipsum nostrud. Nulla consectetur culpa pariatur aliqua in incididunt consectetur. Occaecat exercitation irure eiusmod commodo nostrud veniam proident sunt sint deserunt nostrud esse.
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
This course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
Sofia Olhede is a professor of Statistics at EPFL in Switzerland. She joined UCL prior to this in 2007, before which she was a senior lecturer of statistics (associate professor) at Imperial College London (2006-2007), a lecturer of statistics (assistant p ...