MonoidIn abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in , the morphisms of an to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object.
Gelfond's constantIn mathematics, Gelfond's constant, named after Aleksandr Gelfond, is e^π, that is, e raised to the power pi. Like both e and pi, this constant is a transcendental number. This was first established by Gelfond and may now be considered as an application of the Gelfond–Schneider theorem, noting that where i is the imaginary unit. Since −i is algebraic but not rational, e^π is transcendental. The constant was mentioned in Hilbert's seventh problem. A related constant is 2^, known as the Gelfond–Schneider constant.
Modular arithmeticIn mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801. A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00.
Higher-order singular value decompositionIn multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition. It may be regarded as one type of generalization of the matrix singular value decomposition. It has applications in computer vision, computer graphics, machine learning, scientific computing, and signal processing. Some aspects can be traced as far back as F. L. Hitchcock in 1928, but it was L. R. Tucker who developed for third-order tensors the general Tucker decomposition in the 1960s, further advocated by L.
OrthogonalizationIn linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace. Formally, starting with a linearly independent set of vectors {v1, ... , vk} in an inner product space (most commonly the Euclidean space Rn), orthogonalization results in a set of orthogonal vectors {u1, ... , uk} that generate the same subspace as the vectors v1, ... , vk. Every vector in the new set is orthogonal to every other vector in the new set; and the new set and the old set have the same linear span.
Adjugate matrixIn linear algebra, the adjugate or classical adjoint of a square matrix A is the transpose of its cofactor matrix and is denoted by adj(A). It is also occasionally known as adjunct matrix, or "adjoint", though the latter term today normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose. The product of a matrix with its adjugate gives a diagonal matrix (entries not on the main diagonal are zero) whose diagonal entries are the determinant of the original matrix: where I is the identity matrix of the same size as A.
Structure constantsIn mathematics, the structure constants or structure coefficients of an algebra over a field are the coefficients of the basis expansion (into linear combination of basis vectors) of the products of basis vectors. Because the product operation in the algebra is bilinear, by linearity knowing the product of basis vectors allows to compute the product of any elements (just like a matrix allows to compute the action of the linear operator on any vector by providing the action of the operator on basis vectors).
Definite quadratic formIn mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign (always positive or always negative) for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite. A semidefinite (or semi-definite) quadratic form is defined in much the same way, except that "always positive" and "always negative" are replaced by "never negative" and "never positive", respectively.
Translation (geometry)In Euclidean geometry, a translation is a geometric transformation that moves every point of a figure, shape or space by the same distance in a given direction. A translation can also be interpreted as the addition of a constant vector to every point, or as shifting the origin of the coordinate system. In a Euclidean space, any translation is an isometry. Displacement (geometry) If is a fixed vector, known as the translation vector, and is the initial position of some object, then the translation function will work as .
Matrix (mathematics)In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.